Searches for long-lived particles at LHCb

Marcin Chrząszcz mchrzasz@cern.ch

SUSY 2015, Tahoe City, 23-29 August, 2015

Why long living particles?

- We all know here that the SM is incomplete.
- Unfortunately we do no know what is the scale of NP.
- NP still can come from the Higgs sector \Rightarrow not all properties are yet constrained.

- There is a long list of theoretical models that predict the existence of new particles that couple to the SM sector by mixing with the Higgs.
- Inflaton, axion-like, dark matter mediator models also predict the new boson to be light.
- SUSY models also can have create stable long living particles like \widetilde{q} , $\widetilde{\ell}.$

LHCb detector - tracking

- Excellent Impact Parameter (IP) resolution (20 μ m). \Rightarrow Identify secondary vertices from heavy flavour decays
- Proper time resolution $\sim 40 \ {\rm fs}.$
 - \Rightarrow Good separation of primary and secondary vertices.
- Excellent momentum ($\delta p/p \sim 0.4 0.6\%$) and inv. mass resolution. \Rightarrow Low combinatorial background.

p

 $L \sim 7 \,\mathrm{mm} \mathrm{SV}$

LHCb detector - particle identification

- Excellent Muon identification $\epsilon_{\mu
 ightarrow \mu} \sim 97\%$, $\epsilon_{\pi
 ightarrow \mu} \sim 1-3\%$
- Good $K \pi$ separation via RICH detectors, $\epsilon_{K \to K} \sim 95\%$, $\epsilon_{\pi \to K} \sim 5\%$. \Rightarrow Reject peaking backgrounds.
- High trigger efficiencies, low momentum thresholds. Muons: $p_T > 1.76 \text{GeV}$ at L0, $p_T > 1.0 \text{GeV}$ at HLT1, $B \rightarrow J/\psi X$: Trigger $\sim 90\%$.

Data taken by LHCb

• In 2011 and 2012 LHCb has gather 3 fb^{-1} of pp collisions.

$B \to K^* \chi(\mu \mu)$ search

• Search for displaced di-muon vertex coming form B meson.

$$B^0 \to K^* \chi(\mu^- \mu^+)$$

- If χ mixes with the Higgs and it is light:
 - $\begin{array}{l} \circ \ \ \Gamma(K \to \pi \chi) \propto m_t^4 \lambda^5 \\ \circ \ \ \Gamma(D \to \pi \chi) \propto m_b^4 \lambda^5 \\ \circ \ \ \Gamma(D \to K \chi) \propto m_t^4 \lambda^2 \end{array}$
- In additional $K^* \to K\pi$ helps in vertex reconstruction.
- High $\mathcal{B}(\chi \to \mu^- \mu^+)$.

$B \rightarrow K^* \chi(\mu \mu)$ motivation

Possible models:

1. Inflaton: Phys.Lett. B736 (2014) 494

$$\tau_{\chi} = 10^{-8} - 10^{-10} s$$

$$\circ m_{\chi} \mathcal{O}(1 \text{ GeV})$$

$$\circ \ \mathcal{B}(B \to K\chi) \sim 10^{-6}$$

 $\circ~$ effective couplings to SM particles:

•
$$g_Y \frac{m_f}{v_{EW}}, \ g_Y = \sin \theta$$

- 2. Axion portal: Phys.Rev.D81:034001,2010
 - Prompt decay.
 - Large allowed masses.
 - Axion decay constant: $f_{\chi} \sim 1-3 {
 m ~TeV}$
 - Coupling $\propto \frac{m_f}{f_{\chi}}$.

All those particles have width much smaller than resolution of LHCb detector.

Signal properties

 \Rightarrow Depending on the coupling of the hidden sector we can identify two lifetime regimes:

- Long lifetime (> 0.2 ps)
- Inflaton JHEP 1005:010
- Displaced vertex.
- Almost background free.
- Lower reconstruction efficiency.

Long lifetime ($\leq 0.2 \text{ ps}$)

- Dark matter mediator Phys. Lett. B727
- Axion Phys.Rev.D81
- Prompt decay.
- Contaminated via Sm decay.

/16

Selection

- Trigger on muons.
- Multivariate selection: μBDT http://arxiv.org/abs/1305.7248
 μBDT ensures flat efficiency in lifetime of χ.
- Optimized on Punzi figure-of-merit:

$$P_a = \frac{S}{\frac{5}{2} + \sqrt{B}},$$

with S and B are signal and background yields.

- Factorize lifetime into two components: $\mathcal{L} = \mathcal{L}^{\mathrm{prompt}} \bigotimes \mathcal{L}^{\mathrm{displaced}}$
 - \circ Prompt: $\tau < 3\sigma_{\tau}$
 - \mapsto SM background of $B^0 \rightarrow K^* \mu^- \mu^+$
 - $\circ~$ Displeased: $\tau > 3\sigma_{\tau}$
 - \mapsto Almost background free.

Search strategy

- B⁰ mass constrained.
- Di-muon mass resolution $\sigma_m = 1 7$ MeV.
- Scan m_{test} in steps of $0.5 \sigma_m$.
 - Wide resonances can't affect the search.
 - Narrows resonances one we veto.
- Calculations performed in each m_{test} window.
- A global p-value is assigned form minimum local p-value observed.

Results

 \Rightarrow Grey regions correspond to vetoed regions where narrow resonances are expected.

- \Rightarrow Largest deviation seen in $m_{\chi} = 253$ MeV.
- \rightarrow Not statistically significant: local p-value = 0.2.
- \Rightarrow LHCb-PAPER-2015-036 in preparation.

Branching fraction exclusion limit

- \Rightarrow No deviations from background only hypothesis is observed.
- We set a 95% CL upper limit as function of mass and lifetime of the new particle (in the LHCb accessible range).
- Lower lifetimes have better limit due to higher reconstruction efficiency.

Benchmark models

 \Rightarrow Interpretation of the results in to specific models:

(Specific) inflaton model

Axion portal

 $^{12}/_{16}$

[LHCb-PAPER-2015-036 in preparation]

- \Rightarrow Long living particles can also be produced in the PV.
- This kind of particles would be produce in relatively low velocities and could be identified by their time -of-flight, dE/dx or in Cherenkov detectors.
- \Rightarrow LHCb performed a search for long living $\tilde{\tau}$ particles. $\Rightarrow \tilde{\tau}^+ \tilde{\tau}^-$ produced by Drell-Yan process.

$\tilde{\tau}$ analysis strategy

- \Rightarrow Search performed $\tilde{\tau}$ in mass range of 124 309 GeV.
- \Rightarrow After the loose preselection to reduce normal Drell-Yan production.

 \Rightarrow After the preselection an Neural Network is trained based on Cherenkov detectors to calculate to further suppress the remaining background.

$\tilde{\tau}$ results

- No significant signal yield has been observed.
- Upper limit has been set.

Searches for long-lived particles at LHCb

Conclusion

- A search for a dark boson in the decay channel $B^0 \rightarrow K^* \mu^- \mu^+$ has been presented. • No deviations form SM observed.
- Results are the most constraining exclusion limit on the process.
- LHCb is suited for search for long living particles.
- Stay tuned, more searches like this are on they way.

Backup

Marcin Chrząszcz (Universität Zürich)

Searches for long-lived particles at LHCb