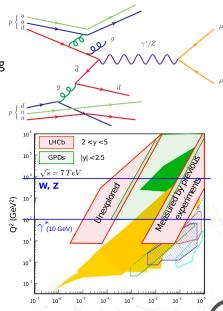
Low Mass Drell-Yan Status Report


Marcin Chrząszcz Katharina Müeller Nicola Chiapolini

Analysis and software week, CERN January 27, 2015

Introduction to Drell-Yan

- Drell-Yan are process of two quark anihilations in which neutral coupling to two leptons.
- The cross section of this process depends on two components:
 - Hard scattering process ⇒ NNLO pQCD.
 - Parton Distribution Function (PDF).
- Measurement of the cross section have a high sensitivity to the PDF
- Due to unique coverage 2 < y < 5 LHCb probes the $Q^2 x$ region not covered by other experiments.

Selection

- Analysis based on 2011 and 2012 data set.
- Plan to measure them separately as well as the ratio (cancellation of systematics).
- Trigger:
 - LO_LODiMuonDecision,
 - $\circ \ \ \texttt{Hlt1DiMuonHighMassDecision,} \\$
 - Hlt2DiMuonDY(3,4)Decision
- Stripping:
 - StrippingDY2MuMuLine(3,4)
- Selection:
 - $\circ 2 < \eta^{\mu} < 4.5$
 - $\circ~p^{\mu} > 10~{
 m GeV}$,
 - $p_T^{\mu} > 3 \; \mathrm{GeV}$,

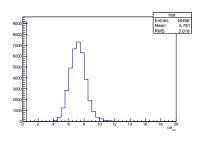
 - $0 10 < m(\mu\mu) < 120 \text{ GeV}.$

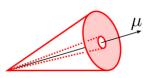
The Goal

- \Rightarrow Since there is no normalization channel, we will use the integrated luminosity for cross section calculations
- \Rightarrow The measurement will be performed in the bins of dimuon mass and pseudo-rapidity:

$M_{\mu\mu}\;[{\rm GeV}/c^2\;]$	10.5 - 11.0	11.0 - 11.5	11.5 - 12.0
	12.0 - 13.0	13.0 - 14.0	14.0 - 15.0
	15.0 - 17.5	17.5 - 20.0	20.0 - 25.0
	25.0 - 30.0	30.0 - 40.0	40.0 - 60.0
	60.0 - 70.0	70.0 - 80.0	80.0 - 90.0
	90.0 - 100.0	100.0 - 110.0	110.0 - 120.0
\overline{y}		2.0 - 4.5	

$M_{\mu\mu} \ [{\rm GeV}/c^2]$	$\begin{array}{ccc} 10.5 & -12.0 \\ 15.0 & -20.0 \end{array}$	$\begin{array}{ccc} 12.0 & -15.0 \\ 20.0 & -60.0 \end{array}$	
y		$\begin{array}{rrr} 2.25 - & 2.5 \\ 3.0 & - & 3.25 \end{array}$	

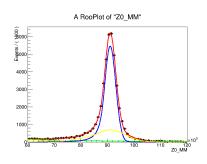

Isolation

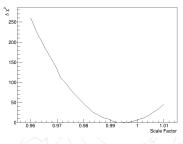

- Drell-Yan unfortunately do not peak in mass need another variable to control the purity.
- Instead we define an isolation variable:

$$\mu_{\text{iso}} = \log(p_T^{cone}(\mu, 0.5) - p_T^{cone}(\mu, 0.1))$$

For two muons we take the maximum of the two isolations:

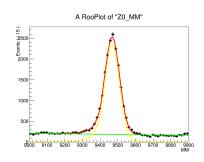
$$\mu\mu_{\rm iso} = \max(\mu_{\rm iso}^+, \mu_{\rm iso}^-)$$

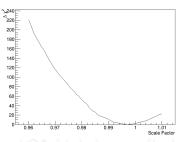

Isolation mass dependence


• Unfortunately the $\mu\mu_{iso}$ is showing some mass dependence:

Signal template

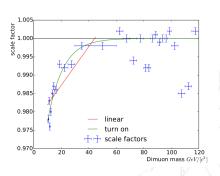
- We do not want to use MC for determination of the signal $\mu\mu_{iso}$ template.
- We adopted a data driven procedure:
 - \circ The template is taken from data and scaled to account for $\mu\mu_{iso}$ mass dependence.
- Possibility 1:
 - \circ Take the Splot $Z \to \mu \mu$ from data and multiply it by the scale factor determined from minimalising the χ^2 between MC Z and DY in particular region.


Signal template


Possibility 2:

- \circ Use a second decay from data: $\Upsilon \to \mu\mu$.
- The template for a given mass range (M_{\min}, M_{\max}) is choose as:

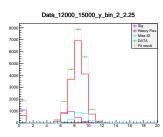
$$\operatorname{Temp}(M) = \operatorname{Temp}^{\Upsilon} \frac{(M_Z - M_{\Upsilon} - (M - M_{\Upsilon}))}{M_Z - M_{\Upsilon}} + \operatorname{Temp}^{Z} \frac{M - M_{\Upsilon}}{M_Z - M_{\Upsilon}}$$

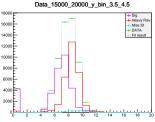

 Then the new obtained template is scaled in the same way as the previous one.

Signal template - Summary

- We are investigating the impact on the analysis for the different approaches
- For now it looks like the results do not change with using different signal templates.
- Because templates are data driven we need to ensure a large statistics in each of the $m_{\mu\mu},\ y$ bins, because of this the last y bin is larger then the rest.

Backgrounds


- There are two sources of backgrounds:
 - Heavy flavour decays.
 - Mis-ID.
- For fitting the $\mu\mu_{iso}$ we need to know both the signal and background distribution.
- Background templates can be determined from data


 - Heavy flavour decays: \hookrightarrow Requiring the $\chi^{2,\mu\mu}_{vtx} > 16$
 - \hookrightarrow For cross-check $\mathrm{IP} > 5~\mathrm{mm}$
 - Miss-ID:
 - → Require that both muons have the same sign.
 - ← For cross-check take the minimum bias stripping line.

Over all fits

- Using the above 3 mentioned templates the fits converge without any problems.
- The higher one goes in mass the cleaner the signal is.

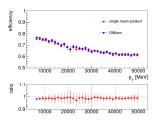
Mass bin	Purity	
[40, 60] GeV	0.879 ± 0.019	
[30, 40] GeV	0.754 ± 0.015	
[25, 30] GeV	0.657 ± 0.011	
[20, 25] GeV	0.507 ± 0.008	
[17.5, 20] GeV	0.402 ± 0.007	
[15, 17.5] GeV	0.316 ± 0.006	

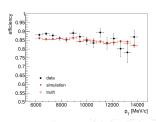
Cross section calculations

To calculate the cross section the luminosity will be used:

$$\sigma = \frac{\varrho f^{\rm MIG}}{\mathcal{L}\varepsilon^{\rm SEL}} \sum \frac{1}{\varepsilon^{\rm TRIG}\varepsilon^{\rm MUID}\varepsilon^{\rm GEC}\varepsilon^{\rm TRACK}},$$

where

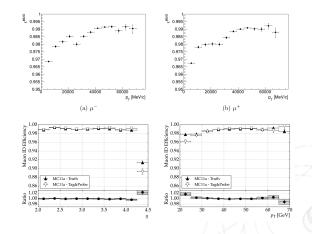

- ϱ signal fraction from the fit.
- $f^{
 m MIG}$ correction to bin-bin migration.
- \mathcal{L} integrated luminosity.
- ullet $arepsilon^{
 m SEL}$ efficiency on the vertex requirement.
- $\varepsilon^{\mathrm{MUID}}$ muon identification efficiency.
- $arepsilon^{GEC}$ global event cut efficiency.
- $arepsilon^{\mathrm{TRACK}}$ tracking efficiency.


Luminosity

- Thanks to our colleagues the error on the luminosity in LHCb is 1.16(1.71)% for 2012(2011) data.
- \bullet For the $8~{\rm TeV}$ data we removed: 111802-111890 , 126124-126160, 129530-129539 runs.
- Lost 14.68 pb^{-1} of data in total.
- ullet For the 7 ${
 m TeV}$ data we removed: 101401, 101403-101415 runs.
- Lost 8.23 pb^{-1} .

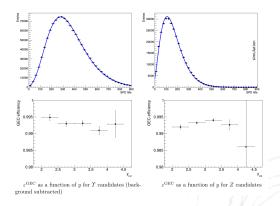
Trigger efficiency

- We take the trigger efficiency from MC. We are using the dimuon trigger that were always well simulated.
- We performed a cross check using tag and probe method that ensures the luminosity is correctly simulated.



 \bullet An systematic uncertainty of 0.01 is assigned.

Muon Identification


- Only muon ID requirement in this analysis is the isMuon.
- The efficiency is taken from MC.
- Has been cross-checked that it agrees in LHCb-INT-2014-030

• The systematics is 0.005 (needs to be checked for the low p_T).

Global even cut efficiency

- There is a SPD cut for the dimuon trigger: SPD<900.
- A data driven method is used to estimate the cut.

- No dependence is observed of the $M_{\mu\mu}$ and the y in data.
- ullet Similar to the W and Z analysis.

Conclusions

- Analysis is well advanced!
- The analysis note is beeing written as we speak: svn+ssh:
 - //svn.cern.ch/reps/lhcbdocs/Users/mchrzasz/DY_ANANote
- +30 pages!
- To do list:
 - $\circ~$ Calculate the theory predictions for $8~{\rm TeV}$ data.
 - Missing systematics: bin-bin migration, templates determination.
 - Hopefully the ANA note in WG review soon!

Backup

