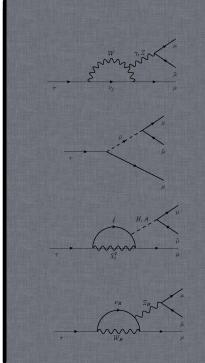
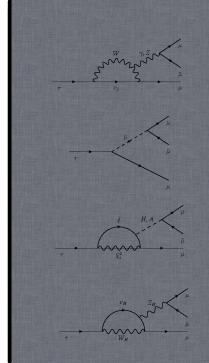
Simulation of the background for analyses with ew-penguin.


Marcin Chrząszcz^{1,2}, Nicola Serra¹

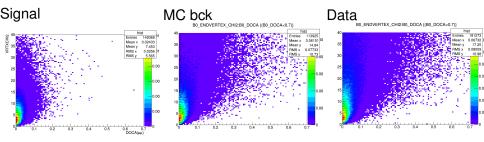
¹ University of Zurich , ² Institute of Nuclear Physics, Krakow,

2nd October 2013



MC vs Data

Dimuon bck importance



Reminder

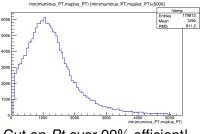
- Last week we proposed a general MC production for all EW penguin.
- 2 Production would consist of two samples:striped and non-stripped.
- 3 Striped one would be used for bck studies.
- On-stripped one would be used for developing a MVA for future stripping.
- **5** There was few questions asked which we want to answer.

Link to previous presentation.

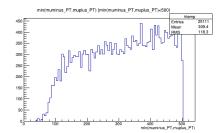
MC vs Data

Dimuon bck importance

1 Is our background really 2 muons?


- After stripping:
- 0.96 has 2 muons.
- 0.999 has at least one real muon.
- Perfect :)

Cuts summary


DiMuon MC			
$ au ightarrow 3\mu$		EW	
$\rho_{t\mu}$	> 290 <i>MeV</i>	$p_{t\mu}$	> 120 <i>MeV</i>
$oldsymbol{ ho}_{\mu}$	> 2.9 <i>GeV</i>	$ ho_{\mu}$	> 2.9 <i>GeV</i>
$M(\mu\mu)$	< 4.5 <i>GeV</i>	m (μμ)	< 5.1 <i>GeV</i>
$DOCA(\mu\mu)$	< 0.35 <i>mm</i>	$DOCA(\mu\mu)$	< 0.45 <i>mm</i>

M.Chrząszcz, N.Serra 2013

Cuts summary

Cut on Pt over 99% efficient!

M.Chrząszcz, N.Serra 2013

Gain using MC cuts

- 1 Back-of-the-envelope calculation
- **2** Based on $\tau \rightarrow 3\mu$ sample.
- $3 \times 10^{\circ}$ 8× the speed of production(compared to single dimuon)
- **4** $O(10^3)$ gain compared to inclusive bb.

Conclusions

- Modifications to cuts is still possible. Let us know.
- 2 We ask for comment/suggestions.
- **3** Hope this sample will be useful for other analysis as for $K^*\mu\mu$.
- We hope this can move forward quickly to put our hands on this sample :)