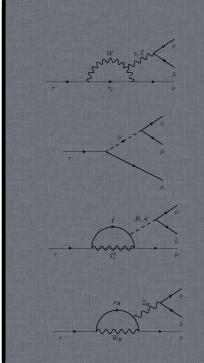
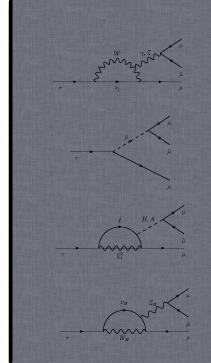
Updates on activities.

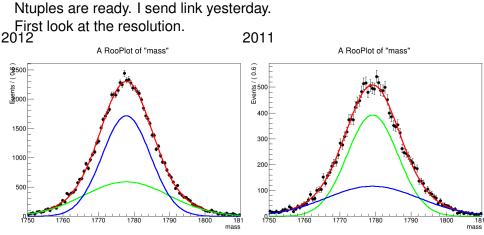

Marcin Chrząszcz^{1,2}, Nicola Serra¹

¹ University of Zurich , ² Institute of Nuclear Physics, Krakow,

10th July 2013

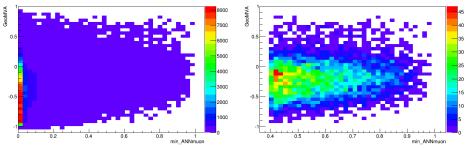


MC Signal


Cutting out trigger decisions

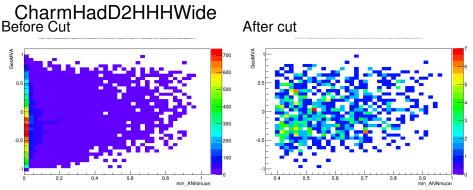
Trash

TMVA


MC Signal

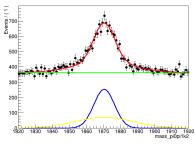
Parameters in errors!. We don't gain with new reco.

Topo2BodyBBDTDec

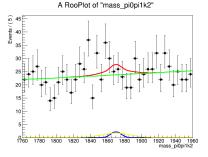

Topo2BodyBBDTDec Before Cut

After Cut

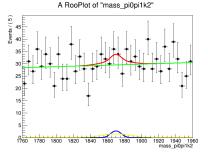
98% efficient. After we get ride of the trash bins.


CharmHadD2HHHWide

97% efficient. After we get ride of the trash bins.

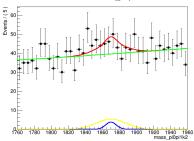

A question was raised by Marta, if we will need to fine tune the trash bin to get ride of $D \rightarrow K\pi\pi$.

• Let's start from current trash bin.



A RooPlot of "mass_pi0pi1k2"

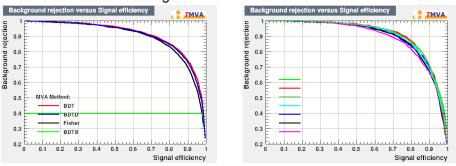
- We clearly see the peak.
- Let's fix now the shape of D(errors are small so no big deal).
- We will cut slices of PIDNN and look for similar peak.



- 0.5σ effect.
- PIDNN (0.45; 0.5)

- 0.8σ effect.
- PIDNN (0.4; 0.45)

Mayby we can make trash smaller?


A RooPlot of "mass_pi0pi1k2"

- 1.7σ effect.
- PIDNN (0.35; 0.40)

Conclusions about the trash

- Looks like the trash can't be made smaller.
- Binning turn out already optimum as it should!
- Part of $D^+ \rightarrow K \pi \pi$ was used for optimisation in the first place.

TMVA

Since MC is still running. Let's train on data.