Jacobian for $\mathsf{B}^0 o \mathsf{K}^* \mu^- \mu^+$ proposed solution

$$\mathsf{B^0} \to \mathsf{K}^* \mu^- \mu^+$$
 team

July 12, 2015

Reminder

- ▶ We wanted to calculate the P_i from S_i .
- Both Toy MC error propagation (generating toy experiments based on the covariance matrix) and bootstrapping the data set produces distribution that has a most probable value that is different to the central value in the data (see plot below, most probable value from toys is different then the generated one (red line)).
- ► As discussed during the referee meeting we considered including the Jacobian the this picture.

Introduction

- ► Lets write down explicit on what we all agree (I hope at least ;)).
 - ▶ Measurement of $\overrightarrow{S} = (F_I, S_x)$ is unbiased.
 - ▶ Error is also correctly estimated ensuring the correct coverage.
- The questions what I am answering: what is the corresponding confidence and probability distribution in a new space:

 → P = (F_I, P_x).
- ► To put it a bit more simple: I want to map one space on the other one.
- ▶ NB: This is a different question than what is the distribution of P measured by the experiments.

Some mathematical theorems assumptions 1

▶ We have our standard transformation of $(\overrightarrow{S} \to \overrightarrow{P})$:

$$\begin{split} F_{l} \leftarrow F_{l} \\ P_{1} \leftarrow 2\frac{S_{3}}{1 - F_{L}} \\ P_{2} \leftarrow \frac{1}{2} \frac{S_{6}^{s}}{1 - F_{L}} &= \frac{2}{3} \frac{A_{\mathrm{FB}}}{1 - F_{L}} \\ P_{3} \leftarrow -\frac{S_{9}}{1 - F_{L}} \\ P_{4}' \leftarrow \frac{S_{4}}{\sqrt{F_{L}(1 - F_{L})}} \\ P_{5}' \leftarrow \frac{S_{5}}{\sqrt{F_{L}(1 - F_{L})}} \\ P_{6}' \leftarrow \frac{S_{7}}{\sqrt{F_{L}(1 - F_{L})}} \\ P_{8}' \leftarrow \frac{S_{8}}{\sqrt{F_{L}(1 - F_{L})}}. \end{split}$$

Some mathematical theorems assumptions 2

- We know about this transformation:
 - ▶ The parameter space is bounded domain (D) ✓
 - ► The angular PDF is smooth function in the domain ✓
 - ▶ There exists 1:1 transformation between \overrightarrow{S} and \overrightarrow{P} ✓
 - ▶ Inside the domain the Jacobian is non-zero. $(J \neq 0)$ ✓
- Next slide you will know why those assumptions are needed.

Some mathematical theorems assumptions 3

- Now since there is 1:1 correspondence the central point in the \overrightarrow{P} should be derived from the central point of the \overrightarrow{S} basis.
- Now the confidence belt. In the \overrightarrow{S} a 68% confidence belt (D) is:

$$\int_{D} f(\overrightarrow{S}) d\overrightarrow{S} = 0.68$$

- ▶ In this equation our *D* is effectively the errors that we quote.
- ▶ Now form analysis thats to previous slide we can write :

$$\int_{D} \underbrace{f(\overrightarrow{S})}_{\text{What we simulate/bootstrap}} d\overrightarrow{S} = \int_{\Delta} \underbrace{f'(\overrightarrow{P})}_{\text{What we get in P}} \times |J| d\overrightarrow{P}$$

Toys

- So to get the integral correct we need to take the Jacobian into account.
- Let's make a toy example calculating P_2 . Values used (Gaussian distributed: mean \pm error): $F_I = 0.7679 \pm 0.2$, $A_{FB} = -0.329 \pm 0.13$.
- ► The Jacobian: $J = \frac{2}{3} \frac{1}{1 F_I}$
- ▶ Generated F_I and A_{FB} :

Toys

- ▶ Now how does the new space look like.
- Important to take into account the boundary as without all my theorems fall down.
- ► The white point is the value from which the toy was generated.

Scatter plot $F_L: P_2$, no Jacobian

Scatter plot $F_L: P_2$, with Jacobian

Re parametrization of pdf

Re parametrization of the pdf gives exactly the same answer as toys taking into account the jacobian:

Profile likelihood from re-parametrised pdf.

Profile likelihood from toys with Jacobian

Toys Conclusions

- ▶ We understand the source of the bias in the most probable value.
- Jacobian gives the same answer as does the parametrization of pdf.
- ► When we work out the interval on P2 (etc), should we use this Jacobian weighting?
- One should not look just at 1D projections as on them the most probable value is not the correct one:
- ▶ Coverage of P_i is ensured by the coverage of S_i .

