$\mathsf{Jacobian for } \mathsf{B}^0 \rightarrow \mathsf{K}^*\mu^-\mu^+$ **proposed solution**

 $\mathsf{B^0}\to\mathsf{K}^*\mu^-\mu^+$ team

July 12, 2015

Reminder

- \triangleright We wanted to calculate the P_i from S_i .
- Both Toy MC error propagation (generating toy experiments based on the covariance matrix) and bootstrapping the data set produces distribution that has a most probable value that is different to the central value in the data (see plot below, most probable value from toys is different then the generated one (red line)).
- \triangleright As discussed during the referee meeting we considered including the Jacobian the this picture.

 $B^0 \rightarrow K^* \mu^- \mu^+$ team

Introduction

- \triangleright Lets write down explicit on what we all agree (I hope at least ;)).
	- \triangleright Measurement of $\overrightarrow{S} = (F_l, S_x)$ is unbiased.
	- \blacktriangleright Error is also correctly estimated ensuring the correct coverage.
- \triangleright The questions what I am answering: what is the corresponding confidence and probability distribution in a new space: $P = (F_1, P_x)$.
- \triangleright To put it a bit more simple: I want to map one space on the other one.
- \triangleright NB: This is a different question than what is the distribution of P measured by the experiments.

Some mathematical theorems assumptions 1

^I We have our standard transformation of (*→− S → →− P*):

$$
F_1 \leftarrow F_1
$$
\n
$$
P_1 \leftarrow 2 \frac{S_3}{1 - F_L}
$$
\n
$$
P_2 \leftarrow \frac{1}{2} \frac{S_6^s}{1 - F_L} = \frac{2}{3} \frac{A_{FB}}{1 - F_L}
$$
\n
$$
P_3 \leftarrow -\frac{S_9}{1 - F_L}
$$
\n
$$
P_4' \leftarrow \frac{S_4}{\sqrt{F_L(1 - F_L)}}
$$
\n
$$
P_5' \leftarrow \frac{S_5}{\sqrt{F_L(1 - F_L)}}
$$
\n
$$
P_6' \leftarrow \frac{S_7}{\sqrt{F_L(1 - F_L)}}
$$
\n
$$
P_8' \leftarrow \frac{S_8}{\sqrt{F_L(1 - F_L)}}
$$

 $B^0 \rightarrow K^* \mu^- \mu^+$ team

- \triangleright We know about this transformation:
	- \triangleright The parameter space is bounded domain (D) \checkmark
	- \triangleright The angular PDF is smooth function in the domain \checkmark
	- → There exists 1:1 transformation between \overrightarrow{S} and \overrightarrow{P} \checkmark
	- Inside the domain the Jacobian is non-zero. $(J \neq 0)$ \checkmark
- \triangleright Next slide you will know why those assumptions are needed.

Some mathematical theorems assumptions 3

- ► Now since there is 1:1 correspondence the central point in the *P* should be derived from the central point of the \overline{S} basis.
- ► Now the confidence belt. In the \overrightarrow{S} a 68% confidence belt (D) is:

$$
\int_D f(\overrightarrow{S})d\overrightarrow{S}=0.68
$$

- In this equation our D is effectively the errors that we quote.
- \triangleright Now form analysis thats to previous slide we can write :

$$
\int_{D} \underbrace{f(\overrightarrow{S})}_{\text{What we simulate/bootstrap}} d\overrightarrow{S} = \int_{\Delta} \underbrace{f'(\overrightarrow{P})}_{\text{What we get in P}} \times |J| d\overrightarrow{P}
$$

Toys

- \triangleright So to get the integral correct we need to take the Jacobian into account.
- Eet's make a toy example calculating P_2 . Values used (Gaussian distributed: mean \pm error): $F_I = 0.7679 \pm 0.2$, $A_{FB} = -0.329 \pm 0.13$.

• The Jacobian:
$$
J = \frac{2}{3} \frac{1}{1 - F_L}
$$

 \blacktriangleright Generated F_I and A_{FR} :

 $B^0 \rightarrow K^* \mu^- \mu^+$ team

Toys

- \triangleright Now how does the new space look like.
- \triangleright Important to take into account the boundary as without all my theorems fall down.
- \blacktriangleright The white point is the value from which the toy was generated.

 \triangleright Re parametrization of the pdf gives exactly the same answer as toys taking into account the jacobian:

Toys Conclusions

- \triangleright We understand the source of the bias in the most probable value.
- \blacktriangleright Jacobian gives the same answer as does the parametrization of pdf.
- \triangleright When we work out the interval on P2 (etc), should we use this Jacobian weighting?
- \triangleright One should not look just at 1D projections as on them the most probable value is not the correct one:
- \blacktriangleright Coverage of P_i is ensured by the coverage of S_i .

