Search for the lepton-flavour violating decays $B^+ \rightarrow K^+ \mu^{\pm} e^{\mp}$

J. Albrecht¹, J. Bhom², M. Chrzaszcz⁴, G.Meier¹, T. Mombächer¹ M. Pikies², F. Polci⁵, S. Reichert¹, N. Serra³

 1 Dortmund , 2 Krakow, 3 Zürich, 4 CERN, 5 LPNHE

Tue meeting, April 30, 2019

Yellow Pages

⇒ Twiki:

https://twiki.cern.ch/twiki/bin/viewauth/LHCbPhysics/B2hemu ⇒ Time scale:

- WG approval 21^{st} Nov. 2018
- Unblinding 25^{th} Apr. 2019
- \Rightarrow Journal target: PRL
- \Rightarrow Contact authors:

J.Bhom (Krakow), T. Mombächer (Dortmund), F. Polci (LPNHE)

Motivation

 \Rightarrow Good "old" anomalies: $P_5',$ $R_{\rm K},$ $R_{\rm K}^*$ can implicate the existence of $b\to s\mu e.$

 \Rightarrow LQ, neutrino CP violation, $Z': \mathcal{B}(B \to Ke\mu) = 10^{-8} - 10^{-10}$.

 \Rightarrow Particularly interesting in LQ: $\mathcal{B}(B \to Ke\mu) = \frac{1-R_k}{0.23} \times 10^{-8}$ should be accessible within analysis sensitivity.

 \Rightarrow Current best UL are from Babar (90% CL) [PR D73 (2006) 092001]:

•
$$\mathcal{B}(B^+ \to K^+ e^+ \mu^-) < 9.1 \times 10^{-8}$$

•
$$\mathcal{B}(B^+ \to K^+ e^- \mu^+) < 13 \times 10^{-8}$$

Motivation

 \Rightarrow Good "old" anomalies: $P_5',$ $R_{\rm K},$ $R_{\rm K}^*$ can implicate the existence of $b\to s\mu e.$

 \Rightarrow LQ, neutrino CP violation, $Z': \mathcal{B}(B \to Ke\mu) = 10^{-8} - 10^{-10}$.

 \Rightarrow Particularly interesting in LQ: $\mathcal{B}(B \to Ke\mu) = \frac{1-R_k}{0.23} \times 10^{-8}$ should be accessible within analysis sensitivity.

 \Rightarrow Current best UL are from Babar (90% CL) [PR D73 (2006) 092001]:

•
$$\mathcal{B}(B^+ \to K^+ e^+ \mu^-) < 9.1 \times 10^{-8}$$

•
$$\mathcal{B}(B^+ \to K^+ e^- \mu^+) < 13 \times 10^{-8}$$

 \Rightarrow Recently Belle also put its 5 cents [PRD 98 (2018) 071101]:

7

•
$$\mathcal{B}(B \to K^* e^+ \mu^-) < 1.6 \times 10^{-7}$$

•
$$\mathcal{B}(B \to K^* e^- \mu^+) < 1.2 \times 10^-$$

⇒ NP predictions: 1503.01084, 1504.07928, 1503.07099, 1507.01412

Analysis Strategy

 \Rightarrow Blind analysis: signal window looked at after finalizing analysis procedure.

- \Rightarrow Analysis strategy:
- Stripping
- Loose preselection
- Target vetos
- Hard MVA and PID selection
- Upper limit setting
- Book airplane ticket to Stockholm (optional ;))
- \Rightarrow Dataset: 3 fb⁻¹, Run1.

Normalization

⇒ Typically the $b\bar{b}$ cross section has large uncertainty. ⇒ It is more beneficial to normalize the decay rate to well know branching fraction ⇒ reduce systematics:

$$\begin{split} \mathcal{B}(\mathcal{B}^+ \to \mathcal{K}^+ \mu^{\pm} e^{\mp}) &= N_{\mathcal{B}^+ \to \mathcal{K}^+ \mu^{\pm} e^{\mp}} \times \frac{\mathcal{B}(\mathcal{B}^+ \to \mathcal{K}^+ J / \psi(\mu^+ \mu^-))}{\varepsilon_{\mathcal{B}^+ \to \mathcal{K}^+ \mu^{\pm} e^{\mp}}} \\ & \frac{\varepsilon_{\mathcal{B}^+ \to \mathcal{K}^+ J / \psi(\mu^+ \mu^-)}}{N_{\mathcal{B}^+ \to \mathcal{K}^+ J / \psi(\mu^+ \mu^-)}} &= N_{\mathcal{B}^+ \to \mathcal{K}^+ \mu^{\pm} e^{\mp}} \times \alpha \end{split}$$

 \Rightarrow Some systematic cancel in the efficiency ratio.

Stripping

Particle or event	Variable	Cut
Event	$n_{\rm SPD}$	< 600
	$ m - m_{PDG} $	$< 1500 \mathrm{MeV}$
D	$\chi^2_{\rm vtx}/{ m dof}$	< 9
В	$\chi^2_{ m FD}$ wrt. PV	> 100
	χ^2_{IP} wrt. PV	< 25
	DIRA wrt. PV	> 0.9995
	p_T	$> 400 \mathrm{MeV}$
K	$\chi^2_{\rm IP}$	> 9
	p_T	$> 300 \mathrm{MeV}$
e	χ^2_{IP} wrt. PV	> 9
	PIDe	> 0
	$_{p_{T}}$	$> 300 \mathrm{MeV}$
II.	χ^2_{IP} wrt.PV	> 9
μ	ISMUON	True
	HASMUON	True
eu pair	$m(e\mu)$	$> 100 \mathrm{MeV}$
~ <i>P</i> ~ P ~···	$\chi^2_{\rm vtx}(e\mu)/{ m dof}$	< 9
	p_T	> 0 MeV
	<i>m</i>	$< 5500 \mathrm{MeV}$
Dimuon	$\chi^2_{\rm vtx}/{\rm dof}$	< 9
	$\chi^2_{ m FD}$ wrt. PV	> 16
	$\chi^2_{\sf IP}$ wrt. PV	> 0
	p_T	> 0 MeV
	m	$< 5500 \mathrm{MeV}$
Dielectron	$\chi^2_{\rm vtx}/{\rm dof}$	< 9
	$\chi^2_{ m FD}$ wrt. PV	> 16
	χ^2_{IP} wrt. PV	> 0

Preselection: veto peaking backgrounds

⇒ Double semileptonic decays: $B \rightarrow e\nu DX$, $D \rightarrow \mu\nu KX$ or $B \rightarrow \mu\nu DX$, $D \rightarrow e\nu KX$ Efficiently removed by: $m_{K\ell} > 1885 \,\mathrm{MeV}/c^2$ ⇒ Charmonium decays:

 ${\it B}
ightarrow {\it J}\!/\psi/\psi(2S){\it K}^+$, with missID daughters.

mass swap	mass region vetoed (MeV)
K with μ mass	$3000 < m_{K^-\mu^+} < 3200$
	$3630 < m_{K^-\mu^+}^- < 3740$
e with μ mass	$2950 < m_{e^-\mu^+} < 3200$
	$3630 < m_{e^-\mu^+} < 3740$
K with e mass	$3000 < m_{K^+e^-} < 3200$
	$3630 < m_{K^+e^-} < 3740$
μ with e mass	$3000 < m_{\mu^+e^-} < 3200$
	$3630 < m_{\mu^+e^-} < 3740$

Signal/Control Channel Model

- \Rightarrow The MC models that have been used in the analysis needs to be updated:
- $B^+ \rightarrow K^+ e^+ e^-$ decay was generated with PHSP model. Needs to be BTOSBALL.
- $B^+ \to K^+ \mu^\pm e^\mp$ decay was generated with BTOSBALL model. Needs to be PHSP.

Trigger lines

	Channel	Particle	L0 trigger	
	$B \to Ke\mu$	μ	L0MuonDecision	
	$B \to K J/\psi (\to \mu \mu)$	μ^{\pm}	L0MuonDecision	
	$B \to K J/\psi (\to ee)$	e^{\pm}	L0ElectronDecision	
Channel	Hlt1 trigger		Hlt2 trigger	
			TopoMu[2,3]	BodyBBDTDecision
P^+ ν^+ ν^\pm	_∓ TrackMuon	Decision	Topo[2,3]Boo	dyBBDTDecision
$D \rightarrow \kappa \mu \epsilon$	TrackAllL0	Decision	SingleMuon	Decision
			SingleMuonL	owPTDecision
			TopoMu[2,3]	BodyBBDTDecision
\mathbf{p}^+ $\mathbf{k}^+ \mathbf{k} \mathbf{k}$	TrackMuon	Decision	Topo[2,3]Boo	dyBBDTDecision
$B \rightarrow K J/\psi$	$(\mu \mu)$ TrackAllL0[Decision	SingleMuon	Decision
			SingleMuonL	owPTDecision
$B^+ \rightarrow K^+ J/\psi$	(e^+e^-) TrackAllL0[Decision	Topo[2,3]Boo	dyBBDTDecision
	TopoE[2,3]E	BodyBBDTD	ecision	4 //2

Data/MC differences

⇒ MC reweighted to correct for data/simulation differences. ⇒ Weights extracted from binned distributions of nTracks, $p_T(B)$ and Vtx χ^2 from $B^+ \to K^+ J/\psi(\mu^+\mu^-)$.

⇒ Splotted data $B^+ \rightarrow K^+ J/\psi(\mu^+ \mu^-)$: double Crystal-Ball and exp function.

Data/MC differences

 \Rightarrow lterative procedure to correct one variable at a time.

 \Rightarrow Convergence after first iteration of variables.

Electron - Muon difference

 \Rightarrow The weights are determined from the muon mode.

 \Rightarrow The question is the VTX χ^2 the same for electrons?

 \Rightarrow Assign 1.4% as systematic as change of normalisation constant.

PID Resampling

 $B^+ \to K^+ \mu^{\pm} e^{\mp} a p proval$

PID Resampling

BDT strategy

⇒ Combinatorial background suppression via BDT using upper sideband as background proxy ⇒ Partially reconstructed background rejected via BDTHOP using lower sideband as background proxy

 \Rightarrow k-Folding technique used, with k = 10 folds.

BDT training and results

- the transverse momentum p_T of the B candidate,
- the momentum p of the B candidate,
- the impact parameter χ^2 , $\chi^2_{\rm IP}$, of the B candidate,
- the direction angle (DIRA) of the B candidate,
- the quality of the $Ke\mu$ vertex χ^2 ,
- the B flight distance χ^2
- the impact parameter χ^2 , $\chi^2_{
 m IP}$, of the kaon
- the minimum and maximum of electron and muon IP candidates
- the cut based isolation variables from $B_s \rightarrow \mu \mu$ analysis: B_relinfo_BSMUMUTRACKPLUSISOTWO_L1,2 and B_relinfo_cone_pt_asym_H.

BDT training and results

- the transverse momentum p_T of the B candidate,
- the momentum p of the B candidate,
- the impact parameter χ^2 , $\chi^2_{\rm IP}$, of the B candidate,
- the direction angle (DIRA) of the B candidate,
- the quality of the $Ke\mu$ vertex χ^2 ,
- the B flight distance χ^2
- the impact parameter χ^2 , $\chi^2_{\rm IP}$, of the kaon
- the minimum and maximum of electron and muon IP candidates
- the cut based isolation variables from $B_s \rightarrow \mu \mu$ analysis: B_relinfo_BSMUMUTRACKPLUSISOTWO_L1,2 and B_relinfo_cone_pt_asym_H.

BDTHOP strategy

⇒ Apply a cut: BDT > 0.98 prior to training ⇒ Use same inputs and strategy as for BDT with additional input of HOP

⇒ Reminder: background proxy is lower mass sideband.

BDTHOP results

 \Rightarrow Clearly discriminating power remains.

8 / 31

Optimization

- \Rightarrow Standard question in RD: How to optimize the selection?
- \Rightarrow We used $\rm CL_s$ method for optimization [Read:451614].
- ⇒ What dataset do you use?

 \Rightarrow We split the datasets for $B^+ \to K^+ \mu^- e^+$ and $B^+ \to K^+ \mu^+ e^-$ and optimize separately.

Optimization

- \Rightarrow Standard question in RD: How to optimize the selection?
- \Rightarrow We used $\rm CL_s$ method for optimization [Read:451614].
- ⇒ What dataset do you use?

 \Rightarrow We split the datasets for $B^+ \to K^+ \mu^- e^+$ and $B^+ \to K^+ \mu^+ e^-$ and optimize separately.

Optimization - PID

 \Rightarrow After the BDT and BDTHOP cuts there isn't much events left to perform PID optimization.

\Rightarrow Decided to put a conservative cuts.

muplus_V2ProbNNmu_Unitato_corrected (Kplus_ID+muplus_ID+=-308 | Kplus_ID+muplus_ID ==-308)

Optimization summary

 \Rightarrow After the full selection this is how our blinded data set looks like:

Mode	Expected background
$B^+ \to K^+ \mu^+ e^-$	3.94 ± 1.15
$B^+ \to K^+ \mu^- e^+$	0.88 ± 0.64

Signal Mass Model

 \Rightarrow We need to know the signal model.

 \Rightarrow We used a data-driven procedure to correct the parameters P:

$$P_{\mu e}^{\text{pred}} = P_{ee}^{\text{data}} + (P_{\mu e}^{\text{MC}} - P_{ee}^{\text{MC}}) \cdot \frac{P_{ee}^{\text{data}} - P_{\mu\mu}^{\text{data}}}{P_{ee}^{\text{MC}} - P_{\mu\mu}^{\text{MC}}}.$$
(4)

Normalization

 \Rightarrow The normalization factor:

$$\alpha = \frac{\mathcal{B}(\mathbf{B}^+ \to \mathbf{K}^+ \mathbf{J}/\psi(\mu^+\mu^-))}{\frac{\varepsilon_{\mathbf{B}^+ \to \mathbf{K}^+ \mu^\pm e^\mp}}{\frac{\varepsilon_{\mathbf{B}^+ \to \mathbf{K}^+ \mathbf{J}/\psi(\mu^+\mu^-)}}{N_{\mathbf{B}^+ \to \mathbf{K}^+ \mathbf{J}/\psi(\mu^+\mu^-)}}}$$

- \Rightarrow Control channel yields:
- 2011:

• 2012:

$$N_{B^+ \to K^+ J/\psi (\mu^+ \mu^-)} = 26940 \pm 170$$

 $N_{B^+ \to K^+ / / \psi (\mu^+ \mu^-)} = 59220 \pm 250$

 $\mathcal{B}(B^+ \to K^+ J\!\!/ \psi \, (\mu^+ \mu^-)) = (6.021 \pm 0.174) \times 10^{-5} \text{ PDG}$

$$\Rightarrow \text{ Combined alpha:} \begin{array}{c} \hline \text{Decay} & \alpha/10^{-9} \\ \hline B^+ \to K^+ \mu^- e^+ & 1.97 \pm 0.18 \\ B^+ \to K^+ \mu^+ e^- & 2.21 \pm 0.19 \end{array}$$

/ 31

Peaking backgrounds

Monte Carlo samples	full mass region	signal region
$B^+ \to K^+ \mu^+ \mu^-$	0.12 ± 0.05	0.10± 0.04
$B^+ \to K^+ e^+ e^-$	0.0080 ± 0.0071	0.0068 ± 0.0060
$B^+ \to K^+ J/\psi (\to \mu \mu)$	< 0.53	< 0.053
$B^+ \to K^+ J/\psi (\to e^+ e^-)$	< 1.05	< 0.21
$B^0 \to K^{*0} e^+ e^-$	< 0.0014	< 0.00014
$\Lambda_b \to p \mathbf{K}^- \mu \mu$	0.0072 ± 0.0030	0.0029 ± 0.0014
$\Lambda_b \to p \mathbf{K}^- e^+ e^-$	< 0.0012	< 0.00048
$\Lambda_b \to p \textit{K}^-\textit{J}/\psi (\to \mu \mu)$	< 0.26	< 0.013
$\Lambda_b \to p K^- J/\psi (\to e^+ e^-)$	< 1.08	< 0.054
$B^- \to D(\to K^- \mu \nu) \nu \mu$	< 2.5	< 0.050
$B^+ \to D(\to K^+ e^- \nu) e^+ \mu$	< 0.50	< 0.010
$B^+ \to D(\to K^+\pi^-)e^+\nu$	< 2.8	< 0.056
$B^+ \to K^+ \pi^+ \pi^-$	1.8 ± 3.2	0.049 ± 0.82

 \Rightarrow All backgrounds are suppressed to a negligible level.

Marcin Chrzaszcz (CERN)

Systematics

Effect	$B^+ \to K^+ \mu^+ e^-$	$B^+ \to K^+ \mu^- e^+$
Data-MC corrections	1.0	1.0
Electron-muon differences	1.4	1.4
MC model weights	0.2	0.2
Fitting model	2.1	2.1
PID resampling - binning	3.3	4.6
PID resampling - sWeighting	3	3
Background (not in $\%$)	0.68	1.67
Trigger	1.0	1.0
Normalisation	6.8	6.6
Total	8.6	9.1

Systematics, PID - binning

 \Rightarrow To perform resampling we bin the PID efficiency in nTracks, p and η . To access the systematics the finner and coarser binnings are \Rightarrow applied.

Marcin Chrzaszcz (CERN)

Systematics, Background model

 \Rightarrow In the nominal fit we assume exponential shape of the background. \Rightarrow The alternative model is determined with a loose selection:

Systematics, Background model

\Rightarrow Now compared to previous fit:

Systematics, Efficiency maps

 \Rightarrow The upper limits are set assuming PHSP model.

 \Rightarrow We will also provide the efficiency maps so theorists can interpret the results in their favorite model:

Upper limits

 \Rightarrow Upper limits set with CL_s method in GammaCombo.

 \Rightarrow This version of ${\rm CL}_{\rm s}$ takes into account the signal and background shape information.

 \Rightarrow This gains the better expected upper limits by 25%. wrt. counting method

Unblinded results

 \Rightarrow On the 25^{th} April we have unblinded our dataset.

Unblinded results

 \Rightarrow On the 25th April we have unblinded our dataset.

Unblinded results

 \Rightarrow On the 25th April we have unblinded our dataset.

Channel	Expected background events	Observed
$B^+ \to K^+ \mu^+ e^-$	3.93 ± 1.14	2
$B^+ \to K^+ \mu^- e^+$	0.88 ± 0.63	1

 \Rightarrow At 90% (95%) confidence level, the observed upper limits for the branching fractions are found to be

$$\mathcal{B}(B^+ \to K^+ e^+ \mu^-) < 6.3(8.2) \times 10^{-9}$$

$$\mathcal{B}(B^+ \to K^+ e^- \mu^+) < 5.7(7.6) \times 10^{-9}$$

$$\mathcal{B}(B^+ \to K^+ e^{\pm} \mu^{\mp}) < 5.7(7.8) \times 10^{-9}$$

Summary

- \Rightarrow Search for ${\it B}^+
 ightarrow {\it K}^+ \mu^\pm e^\mp$ decays has been performed
- \Rightarrow Over a order of magnitude improvement wrt. to BaBar results
- \Rightarrow We target PRL.
- \Rightarrow No significant excess of events has been observed
- \Rightarrow Proponents ask the collaboration to approve this analysis.

Summary

- \Rightarrow Search for ${\it B}^+
 ightarrow {\it K}^+ \mu^\pm e^\mp$ decays has been performed
- \Rightarrow Over a order of magnitude improvement wrt. to BaBar results
- \Rightarrow We target PRL.
- \Rightarrow No significant excess of events has been observed
- \Rightarrow Proponents ask the collaboration to approve this analysis.

Many thanks to the RC for their hard work and comments! Many thanks to Stephane for fast reading the draft.

Backup

Combined banana

³³/₃₁

So large errors

$$\Rightarrow BR = 4.2 \times 10^{-9} \text{ and } BR = 4.5 \times 10^{-9}.$$

