Special LHC run for Magnet Stations

M. Bettler¹, J. Bhom², P. Billoir³, M. Chrzaszcz⁴, C. Da Silva⁵, M.Durham⁵, R.Greim⁶, W.Karpinskig⁶, T.Kiring⁶, M. Martinelli⁴, M. Pikies²

 1 Cambridge, 2 IFJ PAN, 3 LPNHE, 4 CERN, 5 LANL, 6 Aachen

OPG, CERN, September 13, 2018

Where our tracks are?

 \Rightarrow The upstream tracks have rather poor momentum resolution: $\frac{\Delta p}{p} \sim 15\%.$

- \Rightarrow The particles die after short and sad (for physics) life in the magnet yoke.
- \Rightarrow If one put chambers in the magnet stations, one could record the particles before they death.
- \Rightarrow This will not increase the material budget of the rest of the detector.

Special LHC run for Magnet Stations

Studies done so far

- \Rightarrow We have performed studies:
- Radiation: Dosimeters have been put in the magnet region to measure the radiation dose.
- For sensitivity studies the MC was used.

 \Rightarrow These of course are important studies but having a data driven method is the best.

 \Rightarrow Often our MC prediction are wrong ;)

The proposal

 \Rightarrow We would like to propose of obtaining a sample of lower p_T tracks from data.

 \Rightarrow There are essentially two possibilities: (many thanks to Niels for discussion and guidance):

- Make a run with a $50\ \%$ of magnetic field.
 - Direct access to particles that would be swapped by magnet.
 - Not much work on our side
 - Needs additional 10-12h for machine to understand our magnetic field.
- Run with nominal magnet and open the OT.
 - $\circ~$ No work for the LHC people.
 - Needs some extrapolation on our side.
 - Needs 1-2h access to open the OT.

The golden question

How much to open the OT, how much coverage/gain you get?

- \Rightarrow This is a hard one ;) and took a bit of time to answer.
- \Rightarrow We made two types of simulation:
- 1. Open the OT fully.
- 2. Make a half magnetic field

Opened OT

 \Rightarrow Efficiency gain:

\Rightarrow Slow pions from D^* :

Half magnetic field, closed OT

\Rightarrow Efficiency gain:

\Rightarrow Slow pions from D^* :

 \Rightarrow The half magnetic field is more expensive but buys us more phase space.

 \Rightarrow The open OT is "cheaper" but doesn't dig in the most sensitive region.

Backup