Anatomy of the decay $B^0 \to K_S^0 \pi^+ \pi^$ and first observation of the CPasymmetry in the transition $\bar{B^0} \to K^{*-} \pi^+$

LBT meeting, CERN October 6, 2017 LHCb

CERN

Yellow pages

⇒ Proponents: M. Baalouch, E. Ben-Haim, E. Cogneras, T. Gershon, M. Grabalosa, L. Henry, T. Latham, J.M. Maratas, J. McCarthy, D. Milanes, S. Monteil, R. Silva Coutinho, N. Watson

- ⇒ Reviewers: Stephanie Hansmann-Menzemer (chair), Stefano Gallorini
- \Rightarrow EB: Mitesh Patel
- ⇒ EB readers: Patrick Koppenburg, Simon Eidelman

⇒ Twiki: https://twiki.cern.ch/twiki/bin/viewauth/ LHCbPhysics/Dalitz_KSPiPi

 \Rightarrow Jurnal: PRL.

 \Rightarrow Deadline for comments: 13th October.

 \Rightarrow Please send me comments before: 12th October.

Physics in the paper

⇒ Looking for new source of CP violation outside the CKM matrix. ⇒ Looking at the transition $b \rightarrow sq\bar{q}$, where q = u, d, s. ⇒ Rule of thumb: CP violation should be similar to the ones in $b \rightarrow sc\bar{c}$.

 $\Rightarrow \text{ The decay } B^0 \to K_S^0 \pi^+ \pi^- \text{ has }$ reach resonant structure!!

 \Rightarrow Dalitz analysis.

Current of the second s

Figure 1: Invariant mass distributions of $\mathcal{K}_{2}^{k+}\pi^{-}$ candidate events, summing the two years of data taking and the totA \mathcal{R} reconstruction categories. Data are the black points with error bars and the totA \mathcal{R} involution of the totA \mathcal{R} constrained in the totA \mathcal{R} involution of the point (light blue soluti-shed) (dotA) lines, while $\mathcal{R}_{2}^{k+}\pi^{-}$ cross-feed contribution for \mathcal{R}_{2}^{k} (\mathcal{R}^{0}) are the dark blue (green) dashed lines close to the \mathcal{R}_{2}^{k} (\mathcal{R}^{0}) peak. The sum of the spatially reconstructed contributions from \mathcal{B} to go end mark meters, charmises hadronic decays, $\mathcal{R}^{k-} \rightarrow \mathcal{R}_{2}^{k}$ and darmies radiative decays are the red dash triple-dotted lines. The combinatorial background contributions in the gray long-dash dotted lines.

 \Rightarrow Because of available statistics, the analysis is untagged and time integrated (isobar model):

$$P(s_+, s_-) = \frac{|A(s_+, s_-)|^2 |\bar{A}(s_+, s_-)|^2}{\int \int_{\Omega} (|A(s_+, s_-)|^2 |\bar{A}(s_+, s_-)|^2) ds_+ ds_-}$$

Physics in the paper

 \Rightarrow The amplitudes are defined:

$$A = \sum_{j=1}^{N} c_j F_j(s_+, s_-), \ \bar{A} = \sum_{j=1}^{N} \bar{c}_j \bar{F}_j(s_+, s_-)$$

Resonance	Parameters	Line-shape	Value references
$K^{*\pm}(892)$	$m_0 = 891.66 \pm 0.26$ $\Gamma_0 = 50.8 \pm 0.9$	RBW	[27]
$(K\pi)_{0}^{*\pm}$	$\begin{aligned} \text{Re}(c_0) &= 0.204 \pm 0.103 \\ \Im(c_0) &= 0 \\ \text{Re}(c_1) &= 1 \\ \Im(c_1) &= 0 \end{aligned}$	EFKLLM	[28]
$K_2^{*\pm}(1430)$	$m_0 = 1425.6 \pm 1.5$ $\Gamma_0 = 98.5 \pm 2.7$	RBW	[27]
$K^{*\pm}(1680)$	$m_0 = 1717 \pm 27$ $\Gamma_0 = 332 \pm 110$	Flatté [29]	[27]
$f_0(500)$	$m_0 = 513 \pm 32$ $\Gamma_0 = 335 \pm 67$	RBW	[30]
$\rho^{0}(770)$	$m_0 = 775.26 \pm 0.25$ $\Gamma_0 = 149.8 \pm 0.8$	GS [31]	[27]
$f_0(980)$	$m_0 = 965 \pm 10$ $g_{\pi} = 165 \pm 18$ $g_K = 695 \pm 93$	Flatté	[32]
$f_0(1500)$	$m_0 = 1505 \pm 6$ $\Gamma_0 = 109 \pm 7$	RBW	[27]
χ_{c0}	$m_0 = 3414.75 \pm 0.31$ $\Gamma_0 = 10.5 \pm 0.6$	RBW	[27]
Non-resonant (NR)		phase space	

 $A_{CP} = \frac{\left|\bar{c}_{j}\right|^{2} - \left|c_{j}\right|^{2}}{\left|\bar{c}_{j}\right|^{2} + \left|c_{j}\right|^{2}}$

Marcin Chrzaszcz (CERN)

Review of $B \to K_s \pi^+ \pi^-$

Experimental elements

- \Rightarrow Run1 data set! (3 fb⁻¹).
- \Rightarrow Interesting trigger solution:
- $K_S^0 \to \pi\pi$ can decay outside the VELO.
- Only for the second part of 2012 (1.4 fb⁻¹) there was an HLT2 line implemented which considered downstream K_S^0 .
- \Rightarrow BDT for selection.
- \Rightarrow Correcting efficiency in Dalitz plane.

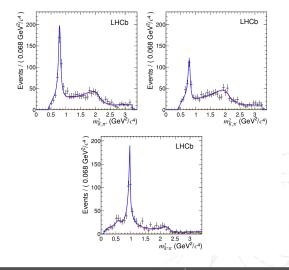
 \Rightarrow Paper reports:

$$\mathcal{F}_{j} = \frac{\int \int_{\Omega} |c_{j}F_{j}(s_{+}, s_{-})|^{2} ds_{+} ds_{-}}{\int \int_{\Omega} |\sum_{j} c_{j}F_{j}(s_{+}, s_{-})|^{2} ds_{+} ds_{-}}$$

$$A_{CP} = \frac{\left|\bar{c}_{j}\right|^{2} - \left|c_{j}\right|^{2}}{\left|\bar{c}_{j}\right|^{2} + \left|c_{j}\right|^{2}}$$

 \Rightarrow Paper reports:

$\mathcal{F}(K^{*\pm}(892)\pi^{\mp})$	=	$9.43 \pm 0.40 \pm 0.33 \pm 0.34$,
$\mathcal{F}((K\pi)_0^{*\pm}\pi^{\mp})$	=	$32.7 \pm 1.4 \pm 1.5 \pm 1.1$,
$\mathcal{F}(K_2^{*\pm}(1430)\pi^{\mp})$	=	$2.45 \ ^+_{-} \ \ ^{0.10}_{0.08} \pm 0.14 \pm 0.12 ,$
$\mathcal{F}(K^{*\pm}(1680)\pi^{\mp})$	=	$7.34 \pm 0.30 \pm 0.31 \pm 0.06$,
$\mathcal{F}(f_0(980)K_{\rm s}^0)$	=	$18.6 \pm 0.8 \pm 0.7 \pm 1.1$,
$\mathcal{F}(\rho^0(770)K_{\rm s}^0)$	=	3.8^{+}_{-} $^{1.1}_{1.6} \pm 0.7 \pm 0.4$,
$\mathcal{F}(f_0(500)K_{\rm s}^0)$	=	$0.32 \ ^+_{-} \ \ ^{0.40}_{0.08} \pm 0.19 \pm 0.23 ,$
$\mathcal{F}(f_0(1500)K_{\rm s}^0)$	=	$2.60 \pm 0.54 \pm 1.28 \pm 0.60$,
${\cal F}(\chi_{c0}K_{ m s}^0)$	=	$2.23 \ ^+_{-} \ \ ^{0.40}_{0.32} \pm 0.22 \pm 0.13 ,$
$\mathcal{F}(K^0_{\rm s}\pi^+\pi^-)^{\rm NR}$	=	$24.3 \pm 1.3 \pm 3.7 \pm 4.5$


 \Rightarrow Paper reports:

$\mathcal{A}_{CP}(K^{*\pm}(892)\pi^{\mp})$	=	$-\ 0.308 \pm 0.060 \pm 0.011 \pm 0.012 ,$
$\mathcal{A}_{CP}((K\pi)_0^{*\pm}\pi^{\mp})$	=	$-0.032 \pm 0.047 \pm 0.016 \pm 0.027$,
$\mathcal{A}_{CP}(K_2^{*\pm}(1430)\pi^{\mp})$	=	$-0.29 \pm 0.22 \pm 0.09 \pm 0.03$,
$\mathcal{A}_{CP}(K^{*\pm}(1680)\pi^{\mp})$	=	$-0.07 \pm 0.13 \pm 0.02 \pm 0.03$,
$\mathcal{A}_{CP}(f_0(980)K_{\rm s}^0)$	=	$0.28 \pm 0.27 \pm 0.05 \pm 0.14$,

⇒ The result is $6.8(6.0) \sigma$ away from being zero. (including systematics). ⇒ Reasonable agreement with world average:

$$A_{CP}(K^{*\pm}\pi^{\mp}) - 0.23 \pm 0.06$$

 \Rightarrow Paper reports:

Marcin Chrzaszcz (CERN)

Review of $B \to K_s \pi^+ \pi$

 $^{6}/_{8}$

Systematics

- \Rightarrow There are two cathegories of systematics:
 - Experimental.
- Model related.
- \Rightarrow The experimental one were obtained with pseudo experiments.
- \Rightarrow Dominant systematics is the efficiency determination!
- \Rightarrow Model related systematics are also evaluated:
- Varying each of the parameters of the mean and the width.
- related to marginal $f_2(1270)$ and $f_0(500)$ resonance components.

First comments

- \Rightarrow Overall the analysis seems solid!!
- \Rightarrow Some things might be better described in the paper.
- \Rightarrow Some physics comments:
- Non-resonant modelling.
- Over estimation of model systematic.

•

 \Rightarrow Paper is to long: 3803 words (PRL : 3750).

Backup

⁹/₈