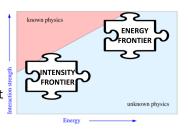
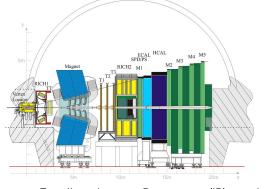
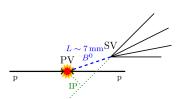
Searches for heavy long-lived particles at LHCb

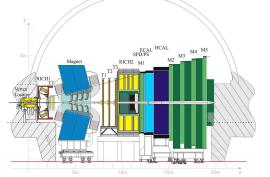

Marcin Chrząszcz mchrzasz@cern.ch

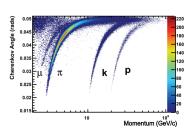
SUSY 2015, Tahoe City, 23-29 August, 2015


Why long-lived particles?

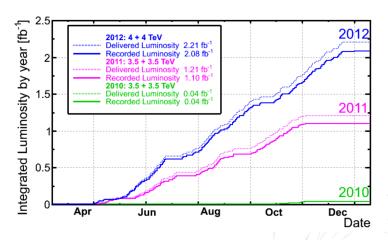

- We all know here that the SM is incomplete.
- Unfortunately we do no know what is the scale of NP.
- NP still can come from the Higgs sector ⇒ not all properties are yet constrained.
- There is a long list of theoretical models that predict the existence of new particles that couple to the SM sector by mixing with the Higgs.

- Inflaton, axion-like, dark matter mediator models also predict the new boson to be light.
- SUSY models also can have stable long living particles like \widetilde{q} , $\widetilde{\ell}$.


LHCb detector - tracking

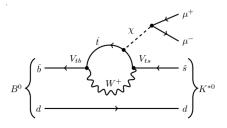


- Excellent Impact Parameter (IP) resolution (20 μm). \Rightarrow Identify secondary vertices from heavy flavour decays
- Proper time resolution $\sim 40~\mathrm{fs}$. \Rightarrow Good separation of primary and secondary vertices.
- Excellent momentum ($\delta p/p \sim 0.4-0.6\%$) and inv. mass resolution. \Rightarrow Low combinatorial background.


LHCb detector - particle identification

- Excellent Muon identification $\epsilon_{\mu \to \mu} \sim 97\%$, $\epsilon_{\pi \to \mu} \sim 1 3\%$
- Good $K-\pi$ separation via RICH detectors, $\epsilon_{K\to K}\sim 95\%$, $\epsilon_{\pi\to K}\sim 5\%$.
 - \Rightarrow Reject peaking backgrounds.
- High trigger efficiencies, low momentum thresholds. Muons: $p_T>1.76{
 m GeV}$ at L0, $p_T>1.0{
 m GeV}$ at HLT1, $B\to J/\psi X$: Trigger $\sim 90\%$.

Data taken by LHCb



 \bullet In 2011 and 2012 LHCb has gathered $3~{\rm fb^{-1}}$ of pp collisions.

$B \to K^* \chi(\mu \mu)$ search

ullet Search for displaced di-muon vertex coming form B meson.

$$B^0 \to K^* \chi(\mu^- \mu^+)$$

- ullet If χ mixes with the Higgs and it is light:
 - $\circ \Gamma(K \to \pi \chi) \propto m_t^4 \lambda^5$
 - $\circ \Gamma(D \to \pi \chi) \propto m_b^4 \lambda^5$
 - $\circ \Gamma(B \to K\chi) \propto m_t^4 \lambda^2$
- In addition; $K^* \to K^+\pi^-$ helps in vertex reconstruction.
- High $\mathcal{B}(\chi \to \mu^- \mu^+)$.

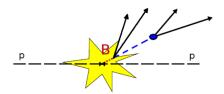
$B \to K^*\chi(\mu\mu)$ motivation

Discussed models:

- 1. Inflaton: Phys.Lett. B736 (2014) 494
 - $\tau_{\rm v} = 10^{-8} 10^{-10} \ s$
 - $\circ \ \stackrel{\sim}{m_\chi} \mathcal{O}(1 \text{ GeV})$
 - $\circ \mathcal{B}(B \to K\chi) \sim 10^{-6}$
 - effective couplings to SM particles:

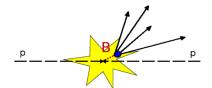
•
$$g_Y \frac{m_f}{v_{EW}}$$
, $g_Y = \sin \theta$

- 2. Axion portal: Phys.Rev.D81:034001,2010
 - o Prompt decay.
 - · Large allowed masses.
 - Axion decay constant: $f_{\chi} \sim 1-3 \text{ TeV}$
 - $\bullet \ \ \mathsf{Coupling} \propto \tfrac{m_f}{f_\chi}.$


All those particles have width much smaller than resolution of LHCb detector.

Signal properties

 \Rightarrow Depending on the coupling of the hidden sector we can identify two lifetime regimes:


Long lifetime (> 0.2 ps)

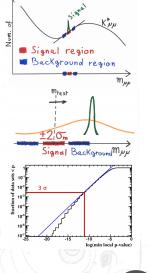
- Inflaton JHEP 1005:010
- Displaced vertex.
- Almost background free.
- Lower reconstruction efficiency.

Short lifetime ($\leq 0.2 \text{ ps}$)

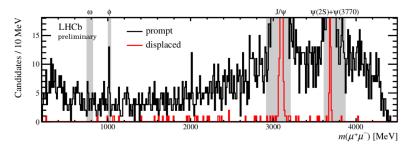
- Dark matter mediator Phys. Lett. B727
- Axion Phys.Rev.D81
- Prompt decay.
- Contaminated via SM decay.

Selection

- Trigger on muons.
- Multivariate selection: μBDT JINST 8(2013)
 - $\circ~\mu BDT$ ensures flat efficiency in lifetime of $\chi.$
- Optimized on Punzi figure-of-merit:

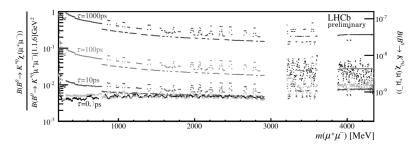

$$P_a = \frac{S}{\frac{5}{2} + \sqrt{B}},$$

with S and B are signal and background yields.


- ullet Factorize lifetime into two components: $\mathcal{L} = \mathcal{L}^{\mathrm{prompt}} igotimes \mathcal{L}^{\mathrm{displaced}}$
 - Prompt: $\tau < 3\sigma_{\tau}$ \mapsto SM background of $B^0 \to K^*\mu^-\mu^+$
 - $\circ~$ Displeased: $\tau > 3\sigma_{\tau}$
 - $\mapsto \mathsf{Almost}\ \mathsf{background}\ \mathsf{free}.$

Search strategy

- B^0 mass constrained.
- Di-muon mass resolution $\sigma_m = 1 7 \text{ MeV}$.
- Scan m_{test} in steps of $0.5~\sigma_m$.
 - Wide resonances can't affect the search.
 - Narrows resonances we veto.
- Calculations performed in each m_{test} window.

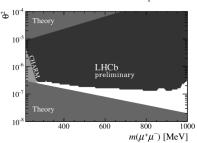


Results

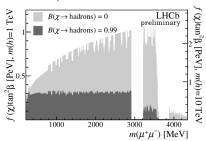
- \Rightarrow Grey regions correspond to vetoed regions where narrow resonances are expected.
- \Rightarrow Largest deviation seen in $m_\chi = 253~{
 m MeV}.$
- \rightarrowtail Not statistically significant: local p-value = 0.2.
- ⇒ LHCb-PAPER-2015-036 submited to PRL.

Branching fraction exclusion limit

- \Rightarrow No deviations from background only hypothesis is observed.
- We set a 95% CL upper limit as function of mass and lifetime of the new particle (in the LHCb accessible range).
- Lower lifetimes have better limit due to higher reconstruction efficiency.


Benchmark models

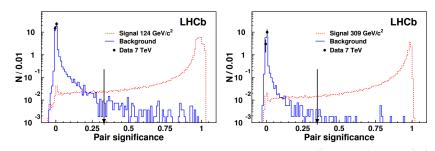
⇒ Interpretation of the results in two specific models:


(Specific) inflaton model

Axion portal

[LHCb-PAPER-2015-036 in preparation]

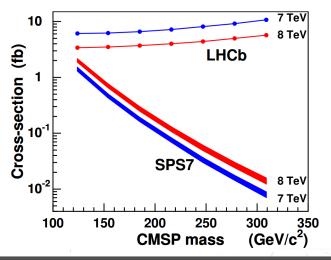
Include 3 sterile neutrinos N_I


MSSM-like two Higgs doublet model.

Long living charged particles like $\tilde{\tau}$

- ⇒ Long living particles can also be produced in the PV.
- This kind of particles would be produce in relatively low velocities and could be identified by their time -of-flight, dE/dx or in Cherenkov detectors.
- \Rightarrow LHCb performed a search for long living $\widetilde{\tau}$ particles.
- $\Rightarrow \tilde{\tau}^+ \tilde{\tau}^-$ produced by Drell-Yan process.

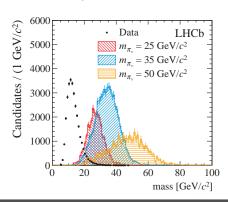
$\tilde{ au}$ analysis strategy

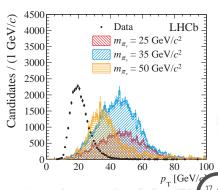

- \Rightarrow Search performed $\tilde{\tau}$ in mass range of $124-309~{\rm GeV}$.
- ⇒ After the loose preselection to reduce normal Drell-Yan production.

 \Rightarrow After the preselection an Neural Net is trained based on Cherenkov detectors to calculate to further suppress the remaining background.

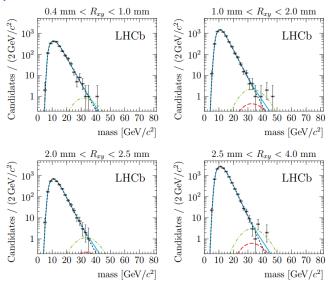
$\widetilde{ au}$ results

- No significant signal yield has been observed.
- 95 % upper limit has been set.

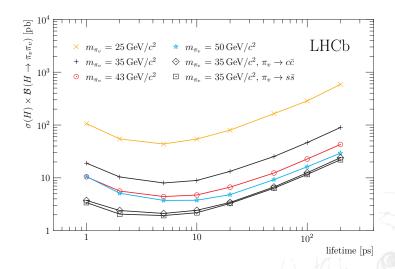



Hidden valley searches

- A possible extensions of the SM are models where the new particles have a small couplings to the SM particles.
- Such models are:
 - Lightest SUSY
 - B/LNV
 - Gravity mediated SUSY
 - Hidden Valleys
- LHCb have performed a search for π_{ν} particles that are pair produced from Higgs like SM particle.
- They have a long lifetime and decay to pair of jets.


Analysis strategy

- Efficient trigger for long living particles.
- Reconstruction of two jets.
- MVA used for vertex search.
- Search performed in different regions of displaced vertexes (R_{xy}) .
 - $\circ~0.4 < R_{xy} < 4~\rm{mm}$, removes heavy flavour and material interaction backgrounds.



Di-jet distribution

• Signal component fit result, Background component

Results

Conclusion

- A search for a dark boson in the decay channel $B^0 \to K^* \mu^- \mu^+$ has been presented.
 - No deviations from SM observed.
- Results are the most constraining exclusion limit on the process.
- LHCb is suited for search for long lived particles.
- Stay tuned, more searches like this are on they way.

Backup