Answeres to questions raised by conveners on EW penguin.

Marcin Chrząszcz^{1,2}, Nicola Serra¹

¹ University of Zurich , ² Institute of Nuclear Physics, Krakow,

4th October 2013

Q: What is the real $\mu\mu$ efficiency after vetoing the J/ ψ ? A:

Efficiency			
Candidate has 2 real μ ID as μ		Candidate has 1 real μ ID as μ .	
J/ψ veto	83%	J/ψ veto	99%
no J/ ψ veto	96%	no J/ ψ veto	99.9%

Comment: If you are scared of 83% please remember that this is stripping. What happens is that one of two muons is missID as pion. Using π/μ veto for swaps, which we do in preselection after stripping this number goes back to 94%.

Clearly making a very lose cut on DOCA (0.45mm) is harmless.

Update on analysis

Outline

4/8

Q: Do we have μ from PV? A: No. there is few($\mathcal{O}(10)$) candidates only that π from PV was missID as μ . *Q:* What is the stripping efficiency? A: Based on $\tau \rightarrow 3\mu \ 12pb^1$ sample efficiency is(with J/ ψ):

$$\varepsilon = \frac{61.020(stripped)}{10.196.221(Generated)} = 0.599\%$$
(1)

With J/ψ veto:

$$\varepsilon = \frac{18705(stripped + J/\psi veto)}{10.196.221(Generated)} = 0.183\%$$
(2)

Back of the envelope calculation. If we need $1 fb^{-1}$ we need 833M events produced, of which 5M will be stored on DSTs(filtered production) If we veto J/ψ we will produce (back of the envelope calculation) we need 255M events produced and 1.53M stored in DSTs.

Q: Is P_t harmless? A: Yes. It's 0.999924 efficient! See signal MC.

Muminus_TRUEPT {Muminus_TRUEPT<1000&&abs(Muminus_TRUEID)==13}

M.Chrząszcz, N.Serra 2013

Q: How long does it take to generate 1k generator level events? A: Around 90 min. on Intel(R) Xeon(R) CPU 5140 2.33GHz

M.Chrząszcz, N.Serra 2013