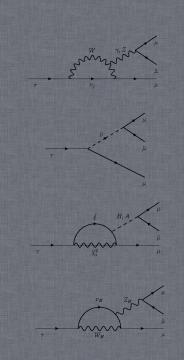
$\Lambda_c \rightarrow p \mu \mu$, $\Lambda_c \rightarrow \mu \mu \mu$

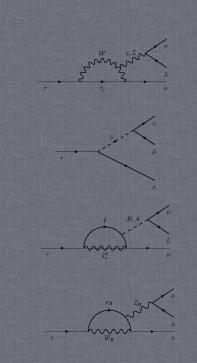
Johannes Albrecht¹,


Marcin Chrząszcz^{2,3}, Tadeusz

Lesiak³, Oliver Grunberg⁴

Technische Universitaet Dortmund
 University of Zurich
 Institute of Nuclear Physics, Krakow
 University of Rostock

8th May 2013



Motivation

Strategy

Comparison Λ_c vs τ

Work done so far

Motivation

Following the success of $\tau \to 3\mu$ and $\tau \to p\mu\mu$ (published 2 weeks ago) we decided to go one step further and analyse analogous channels for Λ_c .

Decays have different physics motivations:

$$\begin{array}{c|c} \tau \rightarrow 3\mu \; \mathsf{LFV} \\ \tau^+ \rightarrow p\mu^-\mu^+ \; |B-L| = 0 \\ \tau^+ \rightarrow \bar{p}\mu^+\mu^+ \; |B-L| = 0 \end{array} \quad \begin{array}{c|c} \Lambda_c \rightarrow 3\mu \; |B-L| = 0 \\ \Lambda_c^+ \rightarrow p\mu^-\mu^+ \; \mathsf{FCNC} \\ \Lambda_c^+ \rightarrow \bar{p}\mu^+\mu^+ \; |B-L| = 0 \end{array}$$

The current limits (@ 90% CL):

$$\begin{array}{l} \mathcal{B}(\Lambda_c^+\to\rho\mu^-\mu^+)<4.4\times10^{-5},\,\text{arXiv:}1107.4465\\ \mathcal{B}(\Lambda_c^+\to\bar{\rho}\mu^+\mu^+)<9.4\times10^{-6}\\ \mathcal{B}(\Lambda_c^+\to3\mu)\,\,\text{No constraints!} \end{array}$$

M.Chrząszcz 2012

Strategy

Follow the strategy of τ analysis:

- Take prompt Λ_c , separate approach to SL.
- Loose cut preselection.
- Train MVA on MC prompt signal and recalibrate on data.
- Mass resolution we expect similar to τ . 15MeV for 3μ and 9MeV for $p\mu\mu$. Mean recalibrated from data on $\Lambda_c^+ \to pK^-\pi^+$.
- Normalize to $\Lambda_c^+ \to pK^-\pi^+$.
- Optimise the binning in MVA.
- · CLs method for limit.

Report on $au o p\ell\ell$ Strategy 4 / 8

Comparison Λ_c vs τ

Strong sides of Λ_c :

- No SM background in 3μ case $(D_s \to \eta(\mu\mu\gamma)\mu\nu)$
- Smaller combinatorial background than in τ decays. \odot

Weaker sides of Λ_c :

- Smaller no. of Λ_c than τ to begin with.
- Need to study very carefully Λ_c production and backgrounds.

Work done so far

- $\Lambda_c \to p\mu\mu$ is already stripped(line was with τ line all along).
- $\Lambda_c \rightarrow 3\mu$ is being stripped in incremental stripping.
- Requested 1M signal samples. Production will start next weak.
- Background studies. (see backup slides).

Report on $au o p\ell\ell$ Work done so far 6 / 8

Backup Slides

Work done so far

- $\Lambda_c \to p\mu\mu$ is already stripped(line was with τ line all along).
- $\Lambda_c \rightarrow 3\mu$ is being stripped in incremental stripping.
- Requested 1M signal samples. Production will start next weak.
- Background studies. (see backup slides).

Report on $au o p\ell\ell$ Work done so far 8 / 8