Search for LFV decays at LHCb

Marcin Chrząszcz

Institute of Nuclear Physics, University of Zurich

19th September 2013

$\begin{array}{c} \tau \text{ decays} \\ \tau^- \rightarrow \mu^- \mu^- \mu^+ \\ \tau^- \rightarrow \overline{p} \mu^- \mu^+ \end{array}$

Model dependence

LFV hunting, "Who ordered that?"I. Rabi

The history of LFV dates back to the discovery of muon:

- After discovery of μ it was natural to think about it as an excited electron.
- Unless you have an other neutrino.

Analogy to GIM mechanism.

τ decays

$$\underbrace{ \begin{pmatrix} 1 \\ 2 \end{pmatrix} }_{\tau^- \to \overline{p} \mu^- \mu^+ } \mu^- \mu^+$$

M.Chrząszcz 2013

Search for LFV decays at LHCb

LFV in au^- sector

 $\tau^- \to \mu^- \mu^- \mu^+$

M.Chrząszcz 2013

Search for LFV decays at LHCb

LFV in au^- sector

1 In SM small
$$\mathcal{B}(\tau^- \to \mu^- \mu^- \mu^+) \sim 10^{-50}$$

2 NP can enhance \mathcal{B} .
3 Nature still hides $\tau^- \to \mu^- \mu^- \mu^+$ from us.

(4) Current limits:

Experiment	90% CL limit
BaBar	$3.3 imes10^{-8}$
Belle	$2.1 imes 10^{-8}$

(5) Can a hadron collider change the picture?

Analysis approach

\mathcal{B} factories

3

LHCb, (7*TeV*, 2011 data)

- 1) Clean signal: $e^+e^- \rightarrow \tau^+\tau^-$
 -) Calculate the thrust axis
 -) "Partial tag"the other au
- Small cross section 0.919*nb*

 $\begin{array}{c} (1) \mbox{ Inclusive } \tau \mbox{ cross section:} \\ 79.5 \pm 8.3 \mbox{ µb.} \\ (2) \mbox{ 8 } \times 10^{10} \tau \mbox{ produced.} \\ (3) \mbox{ Dominant contribution:} \\ D_s \rightarrow \tau \nu_{\tau} \mbox{ (78\%)} \\ (78\%) \mbox{ mass section:} \end{array}$

4) No tag possible.

Strategy

- Loose cut based selection
- Classification in 3D space:
 - invariant mass
 - decay topology (multivariate)
 - particle identification (multivariate)
- Classifier trained on simulation
- Calibration with control channel
- Normalization with $D_{\rm s}
 ightarrow \phi(\mu\mu)\pi$
- CLs method to extract the result

Signal likelihoods

particle identification

- hits in muon chambers
- energy in calorimeters
 - compatible with MIP
- RICH response

Calibration

3 body decay likelihood

- vertex properties
 - vertex fit, pointing
- track quality
- isolation

Calibration

$$\rm D_s \rightarrow \phi \pi$$

Search for LFV decays at LHCb

au decays

Signal likelihoods

particle identification

- hits in muon chambers
- energy in calorimeters
 - compatible with MIP
- RICH response

Calibration

3 body decay likelihood

- vertex properties
 - vertex fit, pointing
- track quality
- isolation

Calibration

$$\rm D_s \rightarrow \phi \pi$$

Search for LFV decays at LHCb

Normalization channel ${f D_s}^+ o \phi(\mu^+\mu^-)\pi^+$

Produced τ leptons

$$\mathcal{B}(\tau \to \mu \mu \mu) = \underbrace{\frac{\sigma(pp \to D_{s} \to \tau)}{\sigma(pp \to \tau)}}_{77.9\%} \frac{\mathcal{B}(D_{s} \to \phi(\mu\mu)\pi)}{\mathcal{B}(D_{s} \to \tau\nu_{\tau})} \frac{\varepsilon_{norm}}{\varepsilon_{sig}} \frac{N_{\tau \to \mu\mu\mu}}{N_{D_{s} \to \phi(\mu\mu)\pi}}$$

M.Chrząszcz 2013

Search for LFV decays at LHCb

au decays

Invariant mass

- background estimation in sidebands
- different signal likelihood inside signal region

- Mass resolution and mass scale calibrated on data
- Blinded window
- Mass window
- Mass resolution: 9.16*MeV*

$D_{m{s}} o \eta(\mu\mu\gamma)\mu u$ background

- One of the main source of irreducible background for 3μ is $D_s \rightarrow \eta(\mu\mu\gamma)\mu\nu$
- We simulated sample corresponding to 5*fb*⁻¹ to get the corresponding pdfs.

- $\frac{1}{3}$ of events in the sensitive bins are coming from this decay.
- Pdfs looked to much like combinatorial background.
- We decided to cut this background away by using di-muon cut M(μμ) > 480MeV.

$D ightarrow K \pi \pi$ background

- In the lowest PID bin we saw $D \rightarrow K\pi\pi$ with 3 miss-ID.
- Bins that suffer from this background are not taken into account in limit calculations.
- Negligible impact on the limit.

Signal likelihoods

combined signal distribution

- events distributed over 25 likelihood bins
- background estimate from mass sidebands

Signal efficiency in 3-BODY BDT vs PID BDT plane.

M.Chrząszcz 2013

Search for LFV decays at LHCb

au decays

Observed events

- Analysis performed blinded.
- No evidence of signal seen after unbinding.
- Used CIs method for limit extraction.

au decays

Extracted upper limit

LNV & BNV in au^- sector

$$\tau^- \to \overline{p}\mu^-\mu^+$$

 $\tau^- \to p\mu^-\mu^-$

M.Chrząszcz 2013

Search for LFV decays at LHCb

(1) Search for baryon number violation processes so far unsuccessful, but must have occurred in the early universe

(2) Decay fall into |B - L| = 0 category, which is predicted by many NP models.

(3) Similar decays $\tau^- \rightarrow \Lambda \ell^-$, previous studied in \mathcal{B} factories.

(4) Two possible decay and new physics modes: $au^- o \overline{p} \mu^- \mu^+$,

 $\tau^- \rightarrow p\mu^-\mu^-$.

(5) Analysis adopted from $au^-
ightarrow \mu^- \mu^- \mu^+$

Differences

- Use the same \mathcal{M}_{3body} BDT as for $\tau^- \to \mu^- \mu^- \mu^+$
- Insead of PID BDT use hard PID cut optimised on MC and Data.
- Worse normalization factor, due to hard PID cuts.
- Only combinatorical background expected.

$$\tau^-
ightarrow \mathrm{p}\mu^-\mu^-$$

Background Fits

$$\tau^- \to \overline{p} \mu^- \mu^+$$

Limits on $\tau^- \rightarrow \overline{p}\mu^-\mu^+$ and $\tau^- \rightarrow p\mu^-\mu^-$

First time measured!!

Plans for future

• Almost all LFV models are based on flat phase space simulation.

Minimal Lepton Flavour Violation Model¹

- In effective-field-theory we introduce new operators that at electro-weak scale are compatible with $SU(2)_L \times U(1)$.
- Left handed lepton doublets add right handed lepton singlets follow the group symmetry: $G_{LF} = SU(3)_L \times SU(3)_E$.
- LFV arises from breaking this group.
- We focus on three operators that have dominant contribution to NP:
 - 1 Purely left handed iterations: $(\overline{L}\gamma_{\mu}L)(\overline{L}\gamma^{\mu}L)$
 - **2** Mix term: $(\overline{R}\gamma_{\mu}R)(\overline{L}\gamma^{\mu}L)$
 - **3** Radiative operator: $g'(\vec{L}H\sigma_{\mu\nu}R)B^{\mu\nu}$

¹arXiv:0707.0988

Dalitz plot for different scenarios

Summary

1) LFV and BNV still hidden from us.

2) First upper limits for τ LFV and LNV in hadron colliders.

3) LHCb catching up \mathcal{B} factories.

4 First search for $\mathcal{B}(\tau \to p\mu\mu)$. 5 Very interesting studies about model dependence ongoing.

Thank you for your attention.

Work partially funded by the Polish Ministry of Science and Higher Education under the "Diamond Grant"

Backup Slides

M.Chrząszcz 2013

Search for LFV decays at LHCb

Model dependence

Backup Slides

M.Chrząszcz 2013

Search for LFV decays at LHCb

Model dependence