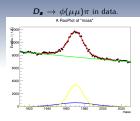
Update on $au o \mu\mu\mu$ searches

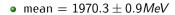
M.Chrzaszcz^{1,2},N. Serra¹,

September 16, 2013

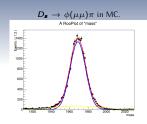
¹ Zurich, ² Krakow

University of Zurich^{UZH}

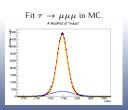



MC samples

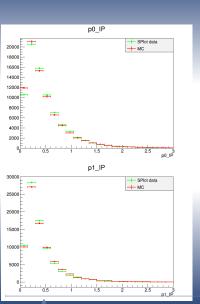
- MC Samples; quite nice(mostly Krakow)
 - All cool MC generator cuts.
 - Signal DONE
 - Calibration channel DONE
 - $b\overline{b}$ bck DONE 18.1 pb^{-1}
 - $c\overline{c}$ bck 50 DONE, $2.6pb^{-1}$
 - $Ds \rightarrow \eta(\mu\mu\gamma)\mu\mu$ DONE > $5fb^{-1}$
 - $\tau \to p\mu\mu$ Hopefully not needed :)
 - Last night all samples got into ntuples.
- 2 cc, bb cross section fixed for now(we will update if we have measurement for cc).



Normalization



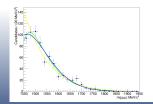
• mean = $1969.1 \pm 0.60 MeV$

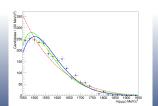




- Here we really suck.
 - Trigger lines changed between 2011 and 2012
 - In 2012 also lines have changed...
 - Need to evaluate the efficiency for each TCK.
 - I am preparing all possible ntuples for Jon to weight the efficiencies accordingly to TCK version.
 - God have mercy on my soul...

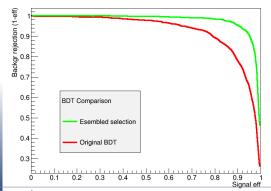
THCP DATA -MC comparison





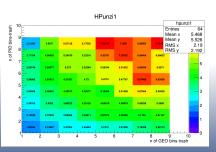
$\mathsf{D}_{\mathsf{s}} \to \overline{\eta(\mu\mu\gamma)\mu\nu}$

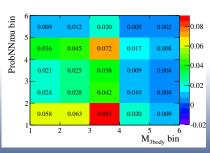
- The dominant background source of peaking background in this analysis is $D_s \to \eta(\mu\mu\gamma)\mu\nu$
- In 2011 we suffered from lack of MC statistics.
- Thanks to generator cuts our pdfs became more stable.
- **4** Pdf used: $\mathcal{P} = exp(m) \times Pol^n(m)$
- **5** This is ready to go.


Isolating Parameter

- All the R&D has finished.
- I have an optimum isolating parameter for 5 different tau sources.
- Only need to write a DV algorithm to put this inside zoontuple.
- Also needs comparison to iso and non -isolating.(Still didn't get answer when can this happen).

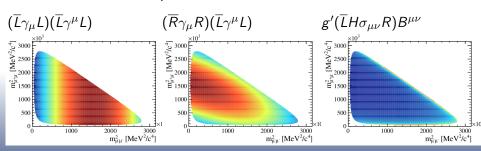
- All the scripts are there
- Limitation is the cc bck sample. Would be nice to have two times more.
- Let's hope this plot will stay the same :)





Binning optimisation

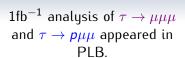
- Also done(I used 2011 data, so just when we fix new BDT need to press Enter).
- How ever last night I had an idea(Nico you won't like this one). What about use purelly Bayesian way to optimise?
- I am to curious to get discourage not to do it :)


FOM as a function of N. of bins.

Signal efficted to signal efficiency / 47

Model dependence

- Paul implemented an "model independent" 3 scenarios.
- he wants only to correct Normalization for studies.
- With Nico we think multidimensional fir would be more fun.
- Also would like to implement some SUSY models.



- Analysis is well under way.
- I am determined to finish asap.
- ullet End of this year is possible if we won't do $au o p\mu\mu$.

BACKUP

Status

Searches for violation of lepton flavour and baryon number in tau lepton decays at LHCb $^{\mbox{\tiny $\frac{1}{2}$}}$

LHCb Collaboration

ARTICLE INFO

Article Instory:
Received 17 April 2013
Received in revised form 27 May 2013
Accepted 29 May 2013
Available online xxxx
Editor: L. Rolandi

ABSTRACT

© 2013 CERN. Published by Elsevier B.V. All rights reserved

2011 results:

- ① Obtained limit for $\tau \to \mu\mu\mu$: 8.0×10^{-8} .
- 2 Belle(BaBar) results: $2.1(3.2) \times 10^{-8}$ at 90% CL.
- For 2012 + 2011 planned to implement several improvements.

For now we use:

- Stripping 20.
- ② Signal sample: official+Krakow produced sample (1M + 1M).
- 3 bb and cc samples: official+Krakow. In total 30M events.
- General strategy stays the same as 2011.

Cross section update

Analysis uses the knowledge of $c\overline{c}$ and $b\overline{b}$ cross sections. In 2011 both were measured by LHCb. For 2012 for the moment we assume:

- $\sigma_{b\overline{b}}^{8TeV}=298\pm36\mu b$ from LHCB-PAPER-2013-016
- $\sigma_{c\overline{c}}^{8\text{TeV}} = \sigma_{c\overline{c}}^{7\text{TeV}} imes \frac{8}{7} = 6950 \pm 1100 \mu b$

Cross checks on $c\overline{c}$

- Pythia cross section calculation.
- 2 Comparing D_s yields in data.

THCP Generated MC samples

- In the 2011 analysis one of the complications from MC was the wrong mixture of tau sources.
- 2 For 2012 we solved this problem by simulating signal in 5 parts. One for each production channel:

$$\tau \rightarrow \mu\mu\mu = \begin{cases} \mathsf{B} \rightarrow \tau \rightarrow \mu\mu\mu & 11.6\% \\ \mathsf{B} \rightarrow \mathsf{D_s} \rightarrow \tau \rightarrow \mu\mu\mu & 8.7\% \\ \mathsf{B} \rightarrow \mathsf{D} \rightarrow \tau \rightarrow \mu\mu\mu & 0.2\% \\ \mathsf{D_s} \rightarrow \tau \rightarrow \mu\mu\mu & 75.0\% \\ \mathsf{D} \rightarrow \tau \rightarrow \mu\mu\mu & 4.4\% \end{cases}$$

MC Generator Cuts

In order to use computing resources in more efficient way we introduced generator level cuts.

Signal sample ¹		Background sample(Dimuon) ²		
$p_{t\mu}$	> 250 <i>MeV</i>	$p_{t\mu}$	> 280 <i>MeV</i>	
p_{μ}	> 2.5 <i>GeV</i>	p_{μ}	> 2.9 <i>GeV</i>	
		$m(\mu\mu)$	< 4.5 <i>GeV</i>	
		$DOCA(\mu\mu)$	< 0.35 <i>mm</i>	

Gain a factor of $\sim 2-3$ in signal statistics compared to 2011 and factor of 8 in background.

$$^{1}X \rightarrow \tau \rightarrow 3\mu$$
, $D_{s} \rightarrow \eta(\mu\mu\gamma)\mu\nu$, $D_{s} \rightarrow \phi(\mu\mu)\pi$

 $^{2}c\bar{c}$, $b\bar{b}$

Trigger lines

In 2011 we took all trigger lines into account. Studies shown we can gain on limiting ourselves to specific lines (2011 data sample).

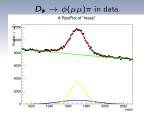
Line Name	ϵ [%]	ϵ' [%]	β [%]	β'[%]
Hlt2CharmSemilepD2HMuMu	81.7	81.7	56.8	56.8
Hlt2DiMuonDetached	75.0	12.5	54.1	17.6
Hlt2TriMuonTau	66.3	2.9	60.0	12.2
Others	-	2.2	_	11.6

, where ϵ is the signal efficiency (any Hlt2physics), ϵ' is the gain of the efficiency.

 β is the efficiency of background and β' is the gain of the bck efficiency Rule of thumb (using $\frac{s}{\sqrt{b}}$ FOM) tells us that we can gain $\mathcal{O}(5\%)$.

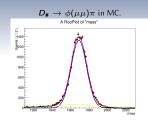
Normalization channel

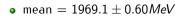
As last year we will use $D_s \to \phi(\mu\mu)\pi$. Similarly to signal channels we produced them with correct proportion:

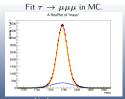

$$\bullet$$
 $cc \rightarrow D_s \rightarrow \phi(\mu\mu)\pi$ 89.7%

2
$$bb \rightarrow D_s \rightarrow \phi(\mu\mu)\pi 10.3\%$$

We avoid reweighting of the samples as in 2011.




Mass correction



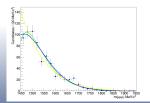
Update on $\tau \to \mu \mu \mu$ searches

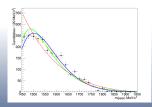
Background samples normalization

For the normalization of background samples ($c\bar{c}$ and $b\bar{b}$) we used generator cuts efficiencies and corrected the nominal cross section accordingly:

$$\mathcal{L} = \frac{N_{MC}}{\varepsilon_{acc} \times \varepsilon_{gen} \times \sigma_{LHCb}}$$

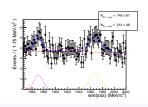
The obtained luminosities(per 1M events):

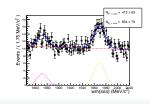

- $\mathcal{L}_{cc} = 0.25 \pm 0.04 pb^{-1}$
- $\mathcal{L}_{bb} = 1.20 \pm 0.15 pb^{-1}$

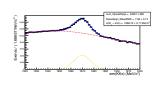

Dominant uncertainty from the cross section.

$$D_s \rightarrow \eta(\mu\mu\gamma)\mu\nu$$

- ① The dominant background source of peaking background in this analysis is $D_s \to \eta(\mu\mu\gamma)\mu\nu$
- 2 In 2011 we suffered from lack of MC statistics.
- Thanks to generator cuts our pdfs became more stable.
- 4 Pdf used: $\mathcal{P} = exp(m) \times Pol^n(m)$







$D \rightarrow \mathsf{hhh}$

In 2011 we saw a triple miss-ID background: $D^+ \to K\pi\pi$. This background was in trash-bins that were not used in the analysis. Also new sources of bck($D_X \to 3\pi$) are well under control.

• 2011 data

2012 data

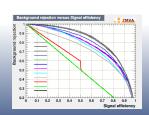
• 2012 data

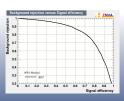
In 2012 there is still no significant amount of triple mis-ID background in the bins important to the analysis.

Isolating parameters

Inputs for isolating parameter(based on Giampiero work):

Variable	Description	
IP χ^2	Impact parameter χ^2 wrt any PV	
IP	Impact parameter wrt any PV	
angle	angle between μ and track	
doca	doca between the μ and the track	
PVdis	$ \overrightarrow{TV} - \overrightarrow{PV} $, signed according to $z_{TV} - z_{PV}$.	
SVdis	$ \overrightarrow{TV} - \overrightarrow{SV} $, signed according to $z_{STV} - z_{PV}$.	
fc	$\frac{ \overrightarrow{P_{\mu}} + \overrightarrow{P_{tr}} \times \alpha}{ \overrightarrow{P_{\mu}} + \overrightarrow{P_{tr}} \times \alpha + P_{T_{\mu}} + P_{T_{tr}}}^{3}$	


 $[\]overrightarrow{P}_{\mu} + \overrightarrow{P}_{tr}$ and $\overrightarrow{PV} - \overrightarrow{TV}$

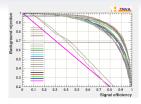


Isolating parameters

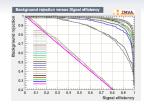
- In 2011 we used the isolation parameter developed for $B^0_s \to \mu\mu$. For 2012 data we optimised the isolation parameter for our channel based on MVA(BDT).
- We follow two approaches: train a MVA on signal vs. bkg tracks, and the isolating vs. non-isolating tracks.
- 3 We see a big improvement compared to old isolation.

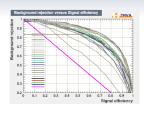
Ensemble Selection

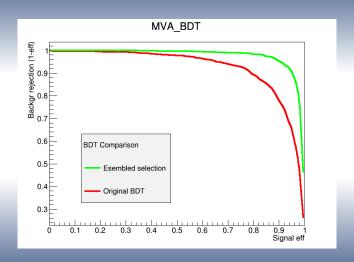
- In the last few years people winning leading machine learning contests started to combine their classifiers to squeeze the best out of them.
- This technique/method is know as Ensemble Selection or Blending.
- **3** The plan for $au o \mu\mu\mu$ is to take it to the next level.
- ① Combine not only different signal classifiers, but also different τ sources(slide 4).
- Solution
 Allows for usage different isolating parameters for each channel.


Ensemble Selection - How to

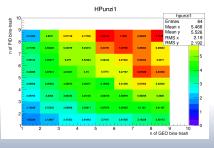
How to make an Ensemble Selection

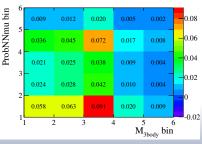

- Construct a reduced training set.
- Train you different models on the reduced training set.
- Combine/Blend all the models on the rest of the data set.
- The output is a function that mixes the individual model predictions into a blended prediction, hopefully better than any individual result.


Ensemble Selection



$$\bullet \ B \to D_s \to \tau$$


Ensemble Selection



Binning optimisation

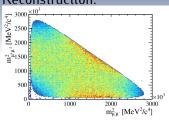
For the 2011 analysis we had two classifiers: *PIDNN* and M_{GEO} . Each of them we optimised separately. For the 2012 analysis we are performing a simultaneous 2D optimisation.

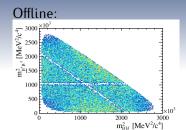
• Signal efficiency in 2011 binning.

Model dependence

Minimal Lepton Flavour Violation Model^a

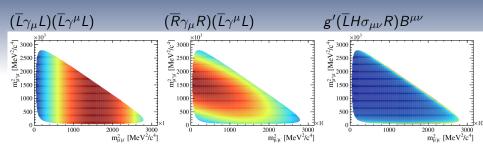
^aarXiv:0707.0988


- In effective-field-theory we introduce new operators that at electro-weak scale are compatible with $SU(2)_L \times U(1)$.
- Left handed lepton doublets add right handed lepton singlets follow the group symmetry: $G_{LF} = SU(3)_L \times SU(3)_E$.
- LFV arises from breaking this group.
- We focus on three operators that have dominant contribution to NP:
 - Purely left handed iterations: $(\overline{L}\gamma_{\mu}L)(\overline{L}\gamma^{\mu}L)$


 - **3** Radiative operator: $g'(\overline{L}H\sigma_{\mu\nu}R)B^{\mu\nu}$

Reweighting MC samples

Reconstruction:



$$\epsilon_{gen\&rec} = C \epsilon_{gen\&rec}^{LHCbMC} \sum_{\rho} \rho^{model}(m_{12}, m_{23})$$
 (1)

- Simulated signal events with PHSP
- Take into account reconstruction and selection.
- Reweight accordingly to a given distribution.

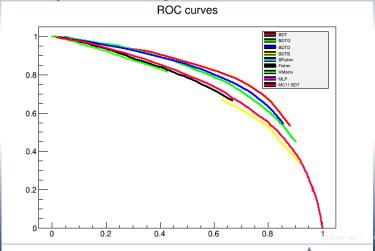
Reweighting MC samples

$$\epsilon_{\text{gen\&rec}} = C \epsilon_{\text{gen\&rec}}^{\text{LHCbMC}} \sum_{\rho} \rho^{\text{model}}(m_{12}, m_{23})$$
 (1)

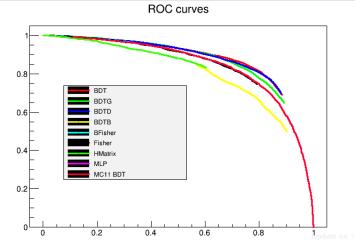
- Simulated signal events with PHSP
- Take into account reconstruction and selection.
- Reweight accordingly to a given distribution.

Conclusions

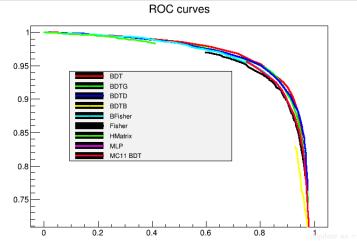
- Analysis is well underway.
- More efficient use of computing resources and increased MC statistics helps at all ends
- Output
 Hope to improve the MVA/binning.



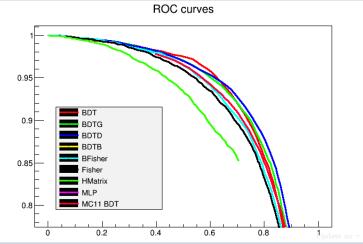
BACKUP


$$B \to \tau$$

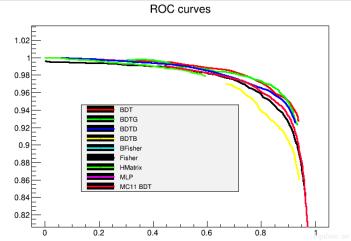
We really suck in selecting this channel.



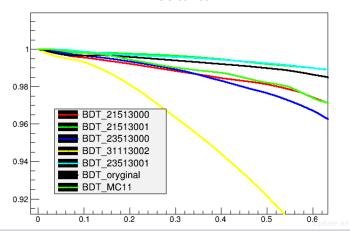
$$B o D_s o au$$



$$D_s \to \tau$$

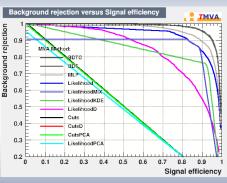


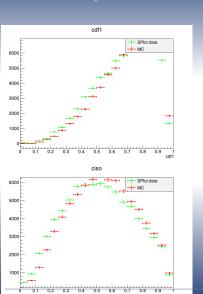
$$B \rightarrow D^+ \rightarrow \tau$$

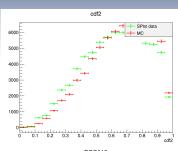

$$D^+ \to \tau$$

Comparison on mix sample

Conclusions on TMVA


- Each of the signal components is enormously larger than MVA trained on mix.
- Method looks very promising if we can find a nice blending method(work for next week).
- Mayby discusion on TMVA/MatrixNet/Neurobayes is next to leading order effect compared to this method?




Comparison on mix sample

