$\tau \rightarrow {\rm 3}\mu$ Status Update

Johannes Albrecht¹,Marta Calvi², Marcin Chrząszcz^{3,4}, Jon Harrison⁵, Basem Khanji², George Lafferty⁵, Nicola Serra³, Paul Seyfert⁶

¹ Dortmund, ² Milano, ³ Zurich, ⁴ Krakow, ⁵ Manchester, ⁶ Heidelberg

28th August 2013

Status

MC Samples

- Normalization channel
- Peaking backgrounds
- Normalization
- Isolating parameter
- **Ensemble Selection**
- **Binning optimisation**

Status

1 fb⁻¹ analysis of $\tau \rightarrow \mu \mu \mu$ and $\tau \rightarrow p \mu \mu$ appeared in PLB. Contents lists available at SciWrue ScienceDirect
Physics Letters B
FLNVIFR
www.elsevier.com/locate/physlatb

Searches for violation of lepton flavour and baryon number in tau lepton decays at LHCb $^{\mbox{\tiny $^{$\mbox{$^{$}$}}$}}$

LHCb Collaboration

ARTICLE INFO	A B S T R A C T
Article history: Received in revised form 27 May 2013 Accepted 29 May 2013 Accepted 29 May 2013 Acailable online xoox Editor: L. Rolandi	Such the first the legen flavor volating decy $t^- = \mu^+ \mu^-$ and the legen flavor and larger momentum volating decy $t^- = \mu^+ \mu^-$. Both second do using promo-proton methods are set of the legence o

2011 results:

- **1** Obtained limit for $\tau \rightarrow \mu \mu \mu$: 8.0 × 10⁻⁸.
- **2** BaBar and Belle: $2.1(3.2) \times 10^{-8}$ at 90% CL.
- S For 2012 + 2011 planned to implement several improvements.

MC Samples

- In 2011 analysis one of the biggest contributions to the systematic error from MC was the reweighting the MC signal for the correct cross section.
- Por 2012 we solved this problem by simulating signal in 5 parts. One for each production channel(normalization to 1M events):

$$\tau \rightarrow \mu\mu\mu = \begin{cases} \mathbf{B} \rightarrow \tau \rightarrow \mu\mu\mu & 116,600\\ \mathbf{B} \rightarrow \mathbf{D}_{\mathrm{s}} \rightarrow \tau \rightarrow \mu\mu\mu & 87,200\\ \mathbf{B} \rightarrow \mathbf{D} \rightarrow \tau \rightarrow \mu\mu\mu & 1,800\\ \mathbf{D}_{\mathrm{s}} \rightarrow \tau \rightarrow \mu\mu\mu & 750,600\\ \mathbf{D} \rightarrow \tau \rightarrow \mu\mu\mu & 43,800 \end{cases}$$

In order to reduce the number of unwanted events we introduced generator level cuts.

Signal sample ¹		Background sample(Dimuon) ²	
$p_{t\mu}$	> 250 <i>MeV</i>	$\rho_{t\mu}$	> 280 <i>MeV</i>
p_{μ}	> 2.5 <i>GeV</i>	ρ_{μ}	> 2.9 <i>GeV</i>
		$m(\mu\mu)$	< 4.5 <i>GeV</i>
		$DOCA(\mu\mu)$	< 0.35 <i>mm</i>

Gain a factor of \sim 8 in statistics compared to 2011.

$$^{1}X \rightarrow \tau \rightarrow 3\mu, D_{s} \rightarrow \eta(\mu\mu\gamma)\mu\nu, D_{s} \rightarrow \phi(\mu\mu)\pi$$

 $^{2}c\bar{c}, b\bar{b}$

As last year we will use $D_s \rightarrow \phi(\mu\mu)\pi$. Events are split into 2 categories:

- 1 $cc \rightarrow D_s \rightarrow \phi(\mu\mu)\pi$ 897,000
- 2 $bb \rightarrow D_s \rightarrow \phi(\mu\mu)\pi$ 103,000

We avoid reweighting of the samples as in 2011.

Mass correction

mean = 1970.3 ± 0.9MeV

mean = 1969.1 ± 0.60MeV

mean = 1777.7 ± 0.4*MeV*

M.Chrząszcz 2013

Peaking backgrounds

- 1 The dominant background source of peaking background in this analysis is $D_s \rightarrow \eta(\mu\mu\gamma)\mu\nu$
- In 2011 we suffered from lack of MC statistics.
- 3 Thanks to generator cuts our pdfs became more stable.

Normalization

For the normalization of background samples ($c\bar{c}$ and $b\bar{b}$) we used generator cuts efficiencies and corrected the nominal cross section accordingly:

$$\mathcal{L} = rac{\textit{N}_{\textit{MC}}}{arepsilon_{\textit{acc}} imes arepsilon_{\textit{gen}} imes \sigma \textit{LHCb}}$$

The obtained luminosities(per 1M events):

1
$$\mathcal{L}_{cc} = 0.25 \pm 0.04 pb^{-1}$$

2
$$\mathcal{L}_{bb} = 1.20 \pm 0.15 pb^{-1}$$

Dominant uncertainty from the cross section.

Isolating parameters

- 1 In 2011 we used the isolation parameter developed for $B_s^0 \rightarrow \mu\mu$. For 2012 data we optimised the isolation parameter for our channel based on MVA(BDT).
- Instead of training on isolating vs non-isoalting tracks we train on combinatorial background vs signal.
- **3** We see big improvement compared to old isolation.

Update on analysis

Isolating parameter

0 / 22

Ensemble Selection

- In the last few years people winning leading machine learning contests started to combine their classifiers to squeeze the best out of them.
- 2 This technique/method is know as Ensemble Selection or Blending.
- **3** The plan for $\tau \rightarrow \mu \mu \mu$ is to take it to the next level.
- Combine not only different channels, but also different τ sources(slide 4).

Ensemble Selection

• $B \rightarrow D \rightarrow \tau$

• $D \rightarrow \tau$

• $D_s \rightarrow \tau$

• $B \rightarrow D_s \rightarrow \tau$

Ensemble Selection

M.Chrząszcz, N.Serra 2013

Update on analysis

Binning optimisation

For the 2011 analysis we had two classifiers: *PIDNN* and M_{GEO} . Each of them we optimised separately. For the 2012 analysis we are performing a simultaneous 2D optimisation.

- 1 Analysis is well underway.
- 2 MC samples are almost there.
- **3** Hope to improve the selection.
- **4** $\tau \rightarrow \boldsymbol{p}\mu\mu$ mode will be studied in parallel.

www.phdcomics.com

BACKUP

We really suck in selecting this channel.

ROC curves

M.Chrząszcz 2013

Update on analysis

 $B \rightarrow D_s \rightarrow \tau$

On the biggest contributing channel we are quite optimal. ROC curves

M.Chrząszcz 2013

Update on analysis

On the biggest contributing channel we are quite optimal. ROC curves

M.Chrząszcz 2013

Update on analysis

$B \rightarrow D^+ \rightarrow \tau$

On the biggest contributing channel we are quite optimal. ROC curves

M.Chrząszcz 2013

Update on analysis

On the biggest contributing channel we are quite optimal. ROC curves

Update on analysis

Comparison on mix sample

On the biggest contributing channel we are quite optimal. ROC curves

M.Chrząszcz 2013

Update on analysis

Conclusions on TMVA

- Each of the signal components is enormously larger than MVA trained on mix.
- Method looks very promising if we can find a nice blending method(work for next week).
- Mayby discusion on TMVA/MatrixNet/Neurobayes is next to leading order effect compared to this method?

Comparison on mix sample

M.Chrząszcz 2013