Update on $au o \mu \mu \mu$ searches

J.Albrecht¹, M.Calvi², <u>M.Chrzaszcz^{3,4}</u>, L. Gavardi², J.Harrison⁵, B. Khanji²,G. Lafferty⁵, E. Rodrigues⁵, N. Serra³, P. Seyfert⁶

> September 19, 2013 ¹ Dortmund, ² Milano, ³ Zurich, ⁴ Krakow,

> > ⁵ Manchester, ⁶ Heidelberg

MC Samples

- 2 Normalization
- 8 Peaking backgrounds
- MVA development
- 6 Binning optimisation
- 6 Model dependence

Status

1fb⁻¹ analysis of $\tau \rightarrow \mu \mu \mu$ and $\tau \rightarrow p \mu \mu$ appeared in PI B.

	Contents lists available at SciVerse ScienceDirect	PHYSICS LITTERS &
	Physics Letters B	
ELSEVIER	www.elsevier.com/locate/physletb	-

Searches for violation of lepton flavour and baryon number in tau lepton decays at LHCb*

LHCb Collaboration

ARTICLE INFO	A B S T R A C T
Article history: Received 17 April 2013 Received in revised form 27 May 2013 Accepted 29 May 2013 Accepted 29 May 2013 Available online xxxx Editor: L. Rolandi	scatters for the legen flavour violating decay $(- \mu) = \mu^{-1}\mu^{-1}$, and the legen flavour and largent combine violating decay $(\mu)\mu^{-1}\mu^{-1}$ and $(- \mu)\mu^{-1}$

2011 results:

- Obtained limit for $\tau \to \mu \mu \mu$: 8.0 × 10⁻⁸.
- Belle(BaBar) results: $2.1(3.2) \times 10^{-8}$ at 90% CL. $\mathbf{2}$
- Solution For 2012 + 2011 planned to implement several improvements.

For now we use:

- Stripping 20.
- Signal sample: official+Krakow produced sample (1M + 1M).
- **(3)** *bb* and *cc* samples: official+Krakow. In total 30M events.
- General strategy stays the same as 2011.

Cross section update

Analysis uses the knowledge of $c\overline{c}$ and $b\overline{b}$ cross sections. In 2011 both were measured by LHCb. For 2012 for the moment we assume:

• $\sigma^{8\,{\it TeV}}_{b\overline{b}}=298\pm36\mu b$ from LHCB-PAPER-2013-016

•
$$\sigma_{c\overline{c}}^{8\,\text{TeV}} = \sigma_{c\overline{c}}^{7\,\text{TeV}} \times \frac{8}{7} = 6950 \pm 1100 \mu b$$

Cross checks on $c\overline{c}$

O Pythia cross section calculation.

2 Comparing D_s yields in data.

Generated MC samples

- In the 2011 analysis one of the complications from MC was the wrong mixture of tau sources.
- For 2012 we solved this problem by simulating signal in 5 parts. One for each production channel:

$$\tau \rightarrow \mu\mu\mu = \begin{cases} \mathsf{B} \rightarrow \tau \rightarrow \mu\mu\mu & \text{11.6\%} \\ \mathsf{B} \rightarrow \mathsf{D}_{\mathsf{s}} \rightarrow \tau \rightarrow \mu\mu\mu & \text{8.7\%} \\ \mathsf{B} \rightarrow \mathsf{D} \rightarrow \tau \rightarrow \mu\mu\mu & \text{0.2\%} \\ \mathsf{D}_{\mathsf{s}} \rightarrow \tau \rightarrow \mu\mu\mu & \text{75.0\%} \\ \mathsf{D} \rightarrow \tau \rightarrow \mu\mu\mu & \text{4.4\%} \end{cases}$$

1

In order to use computing resources in more efficient way we introduced generator level cuts.

Signal sample ¹		Background sample(Dimuon) ²		
$p_{t\mu}$	> 250 <i>MeV</i>	$p_{t\mu}$	> 280 <i>MeV</i>	
p_{μ}	> 2.5 <i>GeV</i>	p_{μ}	> 2.9 <i>GeV</i>	
		$m(\mu\mu)$	< 4.5 <i>GeV</i>	
		DOCA($\mu\mu$)	< 0.35 <i>mm</i>	

Gain a factor of $\sim 2-3$ in signal statistics compared to 2011 and factor of 8 in background.

$$\label{eq:constraint} \begin{array}{l} {}^1X \to \tau \to 3\mu, \, \mathsf{D}_{\mathsf{s}} \to \eta(\mu\mu\gamma)\mu\nu, \, \mathsf{D}_{\mathsf{s}} \to \phi(\mu\mu)\pi \\ {}^2c\bar{c}, \, b\bar{b} \end{array}$$

In 2011 we took all trigger lines into account. Studies shown we can gain on limiting ourselves to specific lines (2011 data sample).

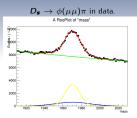
Line Name	ϵ [%]	ϵ' [%]	β [%]	β' [%]
Hlt2CharmSemilepD2HMuMu	81.7	81.7	56.8	56.8
Hlt2DiMuonDetached	75.0	12.5	54.1	17.6
Hlt2TriMuonTau	66.3	2.9	60.0	12.2
Others	-	2.2	-	11.6

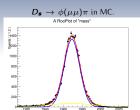
, where ϵ is the signal efficiency (any Hlt2physics), ϵ' is the gain of the efficiency.

 β is the efficiency of background and β' is the gain of the bck efficiency Rule of thumb (using $\frac{s}{\sqrt{h}}$ FOM) tells us that we can gain $\mathcal{O}(5\%)$.

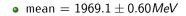
LHCb

rncp Normalization channel

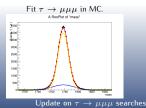

As last year we will use $D_s \rightarrow \phi(\mu\mu)\pi$. Similarly to signal channels we produced them with correct proportion:


- $cc \rightarrow D_s \rightarrow \phi(\mu\mu)\pi$ 89.7%
- 2 $bb \rightarrow D_s \rightarrow \phi(\mu\mu)\pi$ 10.3%

We avoid reweighting of the samples as in 2011.


Normalization

LHCD THCD Mass correction



• mean = $1970.3 \pm 0.9 MeV$

• $m_{\tau \to 3\mu} = \frac{1970.3}{1969.1} \times 1777.7 = 1778.8 \pm 1.1 MeV$ In agreement with 2011.

Normalization

LHCh

Background samples normalization

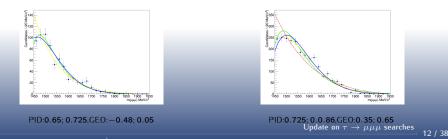
For the normalization of background samples ($c\bar{c}$ and $b\bar{b}$) we used generator cuts efficiencies and corrected the nominal cross section accordingly:

$$\mathcal{L} = \frac{N_{MC}}{\varepsilon_{acc} \times \varepsilon_{gen} \times \sigma_{LHCb}}$$

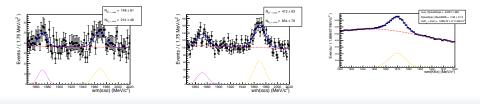
The obtained luminosities(per 1M events):

1
$$\mathcal{L}_{cc} = 0.25 \pm 0.04 pb^{-1}$$

2
$$\mathcal{L}_{bb} = 1.20 \pm 0.15 pb^{-1}$$


Dominant uncertainty from the cross section.

Peaking backgrounds


$\mathsf{D}_{\mathsf{s}} \to \eta(\mu\mu\gamma)\mu\nu$

- \blacksquare The dominant background source of peaking background in this analysis is $D_{\rm s} \to \eta(\mu\mu\gamma)\mu\nu$
- In 2011 we suffered from lack of MC statistics.
- Thanks to generator cuts our pdfs became more stable.
- Pdf used: $\mathcal{P} = exp(m) \times Pol^n(m)$

In 2011 we saw a triple miss-ID background: $D^+ \rightarrow K\pi\pi$. This background was in trash-bins that were not used in the analysis. Also new sources of bck $(D_x \rightarrow 3\pi)$ are well under control.

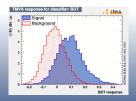
• 2011 data • 2012 data • 2012 data In 2012 there is still no significant amount of triple mis-ID background in the bins important to the analysis.

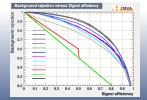
MVA development

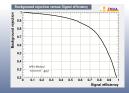
lhcb

Inputs for isolating parameter(based on Giampiero work):

Variable	Description	
IP χ^2	Impact parameter χ^2 wrt any PV	
IP	Impact parameter wrt any PV	
angle	angle between μ and track	
doca	doca between the μ and the track	
PVdis	$ \overrightarrow{TV} - \overrightarrow{PV} $, signed according to $z_{TV} - z_{PV}$.	
SVdis	$ \overrightarrow{TV} - \overrightarrow{SV} $, signed according to $z_{STV} - z_{PV}$.	
fc	$\frac{ \overrightarrow{P_{\mu}} + \overrightarrow{P_{tr}} \times \alpha}{ \overrightarrow{P_{\mu}} + \overrightarrow{P_{tr}} \times \alpha + P_{T_{\mu}} + P_{T_{tr}}}^{3}$	


 ${}^{3}\alpha$ is the angle between $\overrightarrow{P}_{\mu} + \overrightarrow{P}_{tr}$ and $\overrightarrow{PV} - \overrightarrow{TV}$




LHCh

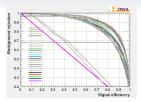
Isolating parameters

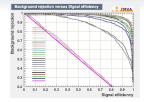
- In 2011 we used the isolation parameter developed for $B_s^0 \rightarrow \mu\mu$. For 2012 data we optimised the isolation parameter for our channel based on MVA(BDT).
- We follow two approaches: train a MVA on signal vs. bkg tracks, and the isolating vs. non-isolating tracks.
- 3 We see a big improvement compared to old isolation.

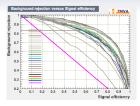
MVA development

- In the last few years people winning leading machine learning contests started to combine their classifiers to squeeze the best out of them.
- ② This technique/method is know as Ensemble Selection or Blending.
- ${f 0}$ The plan for $au o \mu \mu \mu$ is to take it to the next level.
- (a) Combine not only different signal classifiers, but also different τ sources(slide 4).
- 6 Allows for usage different isolating parameters for each channel.

LHCh

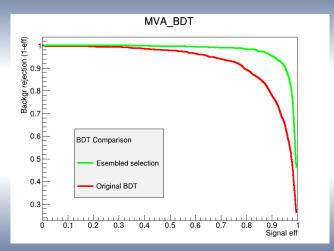

Ensemble Selection - How to


How to make an Ensemble Selection


- Construct a reduced training set.
- Train you different models on the reduced training set.
- Ombine/Blend all the models on the rest of the data set.
- The output is a function that mixes the individual model predictions into a blended prediction, hopefully better than any individual result.

MVA development

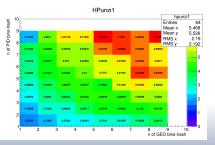
• $B \rightarrow D \rightarrow \tau$

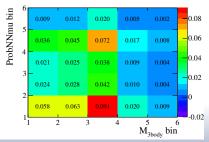

• $D \rightarrow \tau$

• $B \rightarrow D_s \rightarrow \tau$

MVA development

Ensemble Selection


Update on $au o \mu \mu \mu \mu$ searches


Binning optimisation

Binning optimisation

For the 2011 analysis we had two classifiers: *PIDNN* and M_{GEO} . Each of them we optimised separately. For the 2012 analysis we are performing a simultaneous 2D optimisation.

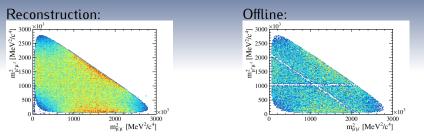
FOM as a function of N. of bins.

• Signal efficiency in 2011 binning.

Model dependence

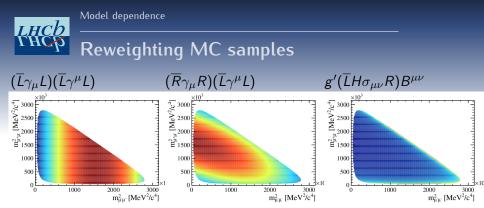
Model dependence

Minimal Lepton Flavour Violation Model^a


^aarXiv:0707.0988

- In effective-field-theory we introduce new operators that at electro-weak scale are compatible with $SU(2)_L \times U(1)$.
- Left handed lepton doublets add right handed lepton singlets follow the group symmetry: $G_{LF} = SU(3)_L \times SU(3)_E$.
- LFV arises from breaking this group.
- We focus on three operators that have dominant contribution to NP:
 - Purely left handed iterations: $(\overline{L}\gamma_{\mu}L)(\overline{L}\gamma^{\mu}L)$
 - **2** Mix term: $(\overline{R}\gamma_{\mu}R)(\overline{L}\gamma^{\mu}\underline{L})$
 - 3 Radiative operator: $g'(\overline{L}H\sigma_{\mu\nu}R)B^{\mu\nu}$

Model dependence


LHCb

Reweighting MC samples

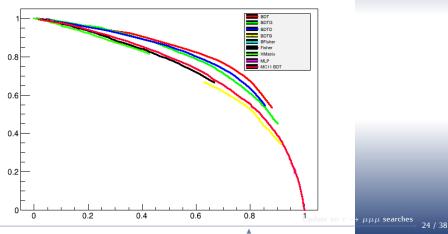
$$\epsilon_{gen\&rec} = C \epsilon_{gen\&rec}^{LHCbMC} \sum \rho^{model}(m_{12}, m_{23}) \tag{1}$$

- Simulated signal events with PHSP
- Take into account reconstruction and selection.
- Reweight accordingly to a given distribution.

$$\epsilon_{gen\&rec} = C \epsilon_{gen\&rec}^{LHCbMC} \sum \rho^{model}(m_{12}, m_{23})$$
(1)

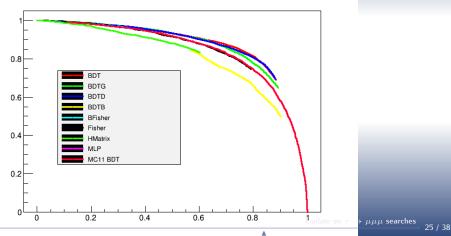
- Simulated signal events with PHSP
- Take into account reconstruction and selection.
- Reweight accordingly to a given distribution.

- Analysis is well underway.
- 2 More efficient use of computing resources and increased MC statistics helps at all ends
- B Hope to improve the MVA/binning.

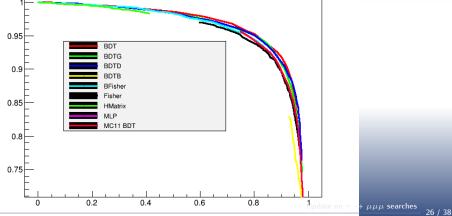

BACKUP

Update on $au o \mu \mu \mu$ searches

We really suck in selecting this channel.


ROC curves

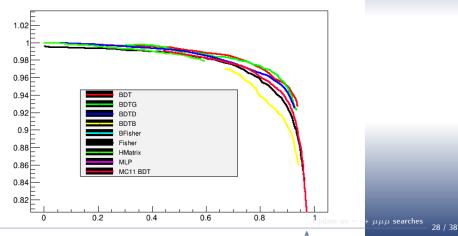
On the biggest contributing channel we are quite optimal.


ROC curves

On the biggest contributing channel we are guite optimal.

ROC curves

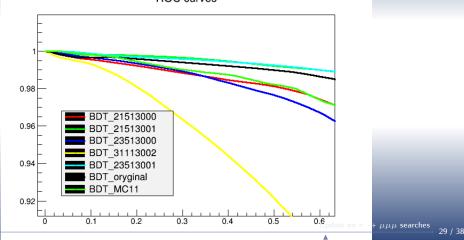
On the biggest contributing channel we are quite optimal.



 $\mu\mu\mu\mu$ searches

On the biggest contributing channel we are quite optimal.

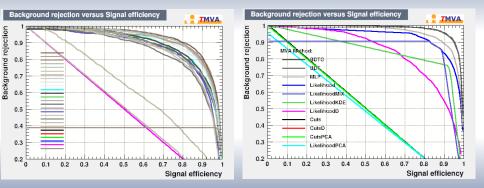
ROC curves



LHCb

Comparison on mix sample

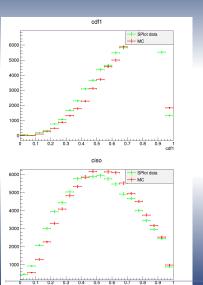
On the biggest contributing channel we are quite optimal. ROC curves

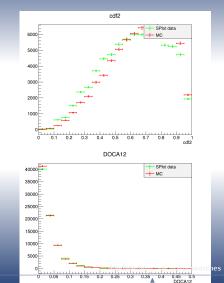

LHCb

Conclusions on TMVA

- Each of the signal components is enormously larger than MVA trained on mix.
- Method looks very promising if we can find a nice blending method(work for next week).
- Mayby discusion on TMVA/MatrixNet/Neurobayes is next to leading order effect compared to this method?

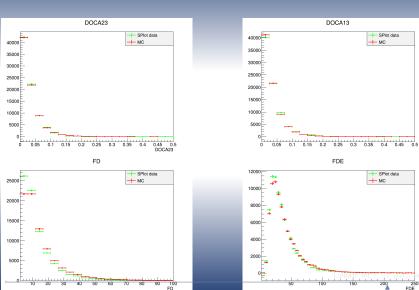
інср


Comparison on mix sample

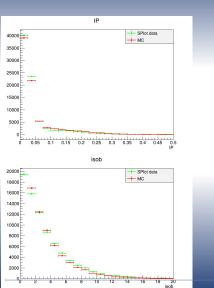


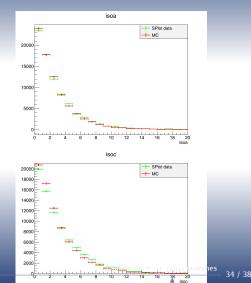
інср

D_s correction


ciso

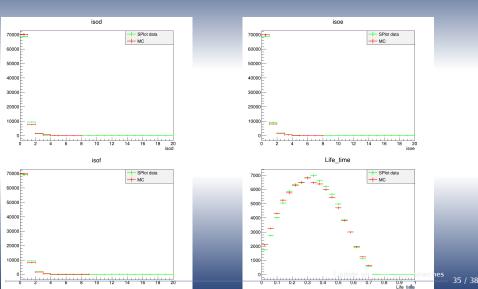
LHCb

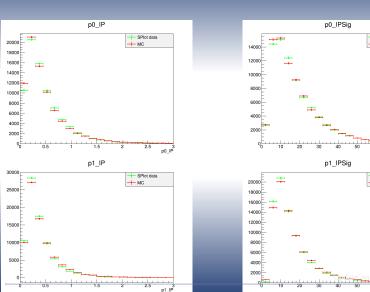

D_s correction



earches

LHCb


D_s correction


Lнср гнср

D_s correction

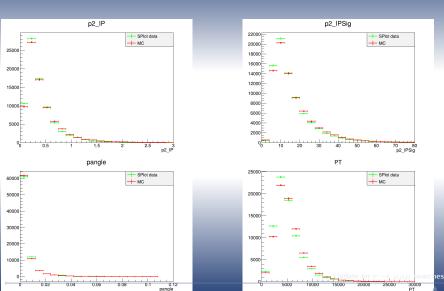
LHCD

D_s correction

- MC

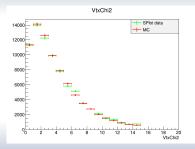
60 70 80 p0_IPSig

- MC


60 70 80

- SPlot data

nes


LHCb ГНСр

D_s correction

інср

D_s correction

