# Low Mass Drell-Yan Status Report



#### Marcin Chrząszcz Katharina Müeller Nicola Chiapolini



Analysis and software week, CERN January 27, 2015

#### Introduction to Drell-Yan

- Drell-Yan are process of two quark anihilations in which neutral coupling to two leptons.
- The cross section of this process depends on two components:
  - Hard scattering process  $\Rightarrow$  NNLO pQCD.
  - Parton Distribution Function (PDF).
- Measurement of the cross section have a high sensitivity to the PDF
- Due to unique coverage 2 < y < 5 LHCb probes the Q<sup>2</sup> - x region not covered by other experiments.



#### Selection

- Analysis based on 2011 and 2012 data set.
- Plan to measure them separately as well as the ratio (cancellation of systematics).
- Trigger:
  - $\circ$  LO\_LODiMuonDecision,
  - Hlt1DiMuonHighMassDecision,
  - Hlt2DiMuonDY(3,4)Decision
- Stripping:
  - StrippingDY2MuMuLine(3,4)
- Selection:
  - $\circ~2 < \eta^{\mu} < 4.5$ ,
  - $\circ~p^{\mu}>10~{\rm GeV}$  ,
  - $\circ p_T^{\mu} > 3 \text{ GeV}$ ,

$$\circ \chi^{2,\mu\mu}_{vtx} < 5$$
,

 $\circ 10 < m(\mu\mu) < 120 \text{ GeV}.$ 

#### The Goal

 $\Rightarrow$  Since there is no normalization channel, we will use the integrated luminosity for cross section calculations

 $\Rightarrow$  The measurement will be performed in the bins of dimuon mass and pseudo-rapidity:

| $M_{\mu\mu} \; [ \; \text{GeV}/c^2 \; ]$  | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$              | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$              | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ |
|-------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------|
| y                                         |                                                                   | 2.0 - 4.5                                                         |                                                      |
|                                           |                                                                   |                                                                   |                                                      |
| $M_{\mu\mu} \; [ \; {\rm GeV} / c^2 \; ]$ | $\begin{array}{rrr} 10.5 & -\ 12.0 \\ 15.0 & -\ 20.0 \end{array}$ | $\begin{array}{rrr} 12.0 & -\ 15.0 \\ 20.0 & -\ 60.0 \end{array}$ |                                                      |
| <i>y</i>                                  | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$              | 2.25 - 2.5<br>3.0 - 3.25                                          | 2.5 - 2.75<br>3.25 - 3.5                             |
|                                           |                                                                   |                                                                   |                                                      |

Marcin Chrząszcz (Universität Zürich)

#### Isolation

- Drell-Yan unfortunately do not peak in mass —» need another variable to control the purity.
- Instead we define an isolation variable:

$$\mu_{\rm iso} = \log(p_T^{cone}(\mu, 0.5) - p_T^{cone}(\mu, 0.1))$$

For two muons we take the maximum of the two isolations:

$$\mu\mu_{\rm iso} = \max(\mu_{\rm iso}^+, \mu_{\rm iso}^-)$$



#### Isolation mass dependence

• Unfortunately the  $\mu\mu_{iso}$  is showing some mass dependence:



<sup>6</sup>/16

# Signal template

- We do not want to use MC for determination of the signal  $\mu\mu_{iso}$  template.
- We adopted a data driven procedure:
  - The template is taken from data and scaled to account for μμ<sub>iso</sub> mass dependence.
- Possibility 1:
  - Take the Splot  $Z \rightarrow \mu\mu$  from data and multiply it by the scale factor determined from minimalising the  $\chi^2$ between MC Z and DY in particular region.



## Signal template

- Possibility 2:
  - $\circ~$  Use a second decay from data:  $\Upsilon \to \mu \mu.$
  - $\circ~$  The template for a given mass range  $(M_{\min}, M_{\max})$  is choose as:

$$\begin{split} \text{Temp}(M) &= \text{Temp}^{\Upsilon} \frac{(M_Z - M_{\Upsilon} - (M - M_{\Upsilon}))}{M_Z - M_{\Upsilon}} \\ &+ \text{Temp}^Z \frac{M - M_{\Upsilon}}{M_Z - M_{\Upsilon}} \end{split}$$

 Then the new obtained template is scaled in the same way as the previous one.



#### Signal template - Summary

- We are investigating the impact on the analysis for the different approaches
- For now it looks like the results do not change with using different signal templates.
- Because templates are data driven we need to ensure a large statistics in each of the  $m_{\mu\mu}$ , y bins, because of this the last y bin is larger then the rest.



#### Backgrounds

- There are two sources of backgrounds:
  - Heavy flavour decays.
  - Mis-ID.
- For fitting the  $\mu\mu_{iso}$  we need to know both the signal and background distribution.
- Background templates can be determined from data

  - Heavy flavour decays: Requiring the  $\chi^{2,\mu\mu}_{vtx} > 16$ 
    - $\hookrightarrow$  For cross-check IP > 5 mm
  - Miss-ID:
    - $\hookrightarrow$  Require that both muons have the same sign.
    - $\hookrightarrow$  For cross-check take the minimum bias stripping line.

#### Over all fits

- Using the above 3 mentioned templates the fits converge without any problems.
- The higher one goes in mass the cleaner the signal is.

| Mass bin              | Purity            |  |
|-----------------------|-------------------|--|
| $[40, 60]  {\rm GeV}$ | $0.879 \pm 0.019$ |  |
| $[30, 40]  {\rm GeV}$ | $0.754 \pm 0.015$ |  |
| $[25, 30]  {\rm GeV}$ | $0.657 \pm 0.011$ |  |
| $[20, 25]  {\rm GeV}$ | $0.507 \pm 0.008$ |  |
| [17.5, 20]  GeV       | $0.402\pm0.007$   |  |
| [15, 17.5]  GeV       | $0.316 \pm 0.006$ |  |



#### Cross section calculations

• To calculate the cross section the luminosity will be used:

$$\sigma = \frac{\varrho f^{\mathrm{MIG}}}{\mathcal{L}\varepsilon^{\mathrm{SEL}}} \sum \frac{1}{\varepsilon^{\mathrm{TRIG}\varepsilon^{\mathrm{MUID}}\varepsilon^{\mathrm{GEC}\varepsilon^{\mathrm{TRACK}}}},$$

where

- $\varrho$  signal fraction from the fit.
- $f^{\mathrm{MIG}}$  correction to bin-bin migration.
- $\mathcal{L}$  integrated luminosity.
- +  $\varepsilon^{\rm SEL}$  efficiency on the vertex requirement.
- $\varepsilon^{\rm MUID}$  muon identification efficiency.
- $\varepsilon^{\rm GEC}$  global event cut efficiency.
- $\varepsilon^{\text{TRACK}}$  tracking efficiency.



- Thanks to our colleagues the error on the luminosity in LHCb is 1.16(1.71)% for 2012(2011) data.
- For the  $8 \ {\rm TeV}$  data we removed: 111802-111890 , 126124-126160, 129530-129539 runs.
- Lost  $14.68 \text{ pb}^{-1}$  of data in total.
- $\bullet\,$  For the  $7~{\rm TeV}$  data we removed: 101401, 101403-101415 runs.
- Lost 8.23 pb<sup>-1</sup>.

## Trigger efficiency

- We take the trigger efficiency from MC. We are using the dimuon trigger that were always well simulated.
- We performed a cross check using tag and probe method that ensures the luminosity is correctly simulated.



• An systematic uncertainty of 0.01 is assigned.

#### **Muon Identification**

- Only muon ID requirement in this analysis is the isMuon.
- The efficiency is taken from MC.
- Has been cross-checked that it agrees in LHCb-INT-2014-030



• The systematics is 0.005 (needs to be checked for the low  $p_T$ ).

 $^{14}/_{16}$ 

#### Global even cut efficiency

- There is a SPD cut for the dimuon trigger: SPD<900.
- A data driven method is used to estimate the cut.



 $\varepsilon^{\rm GEC}$  as a function of y for  $\varUpsilon$  candidates (background subtracted)

 $\varepsilon^{\rm GEC}$  as a function of y for Z candidates

- No dependence is observed of the  $M_{\mu\mu}$  and the y in data.
- Similar to the W and Z analysis.

Marcin Chrząszcz (Universität Zürich)

#### Conclusions

- Analysis is well advanced!
- The analysis note is beeing written as we speak: svn+ssh:

//svn.cern.ch/reps/lhcbdocs/Users/mchrzasz/DY\_ANANote

- +30 pages!
- To do list:
  - $\circ~$  Calculate the theory predictions for  $8~{\rm TeV}$  data.
  - Missing systematics: bin-bin migration, templates determination.
  - $\circ~$  Hopefully the ANA note in WG review soon!

# Backup

Marcin Chrząszcz (Universität Zürich)

17/16