$\mathsf{B} o \mathsf{K}^* \mu \mu$ update

Marcin Chrząszcz¹

¹ University of Zurich

May 26, 2015

Fast reminder

- ► We all had no idea how to propagate the bloody error.
- ► I managed to caught Glen Cowan at CERN and he solved my problem;)

Solution

- The central value should be chosen as the one from central values.
- ► Why?
 - ▶ It maximals the LL
- ▶ Why did we get two different answers?
 - Errors are not Gaussian.
 - ▶ What I did is essentially a test if the errors are Gaussian.
- So how to get the errors?
 - ► Run FC.

One step forward...

- Unfortunately Glen also said that for the FC pdf should be positive.
- ► Errors are asymmetric \rightarrow distributions do not follow a χ^2 statistics.
- ▶ We do not ensure that our pdf. is physical in the fit.

This looks scary

- ▶ A bit high, 10% of PHSP has a negative pdf.
- ▶ MoM are batter → LOL

Weighted fit

Weighted fit

- Why this happend?
 - ► Roofit checks that in each evaluation point the full pdf is positive.
 - ▶ In this bin we have 11 points in which signal pdf only is negative.
 - ▶ Parameters change a lot:

	F_L	S_6
Weighted fit	0.8113	-0.065
Christoph fit	0.877	-0.0885

- ► So Christoph fits ensures that the full pdf is positive.
- Roofit check that the single components are also positive.

Solution general

- ▶ Add "ghost events" to the dataset.
- Aka events that have extremely small weight (can't bias the fit).