BDT update

Marcin Chrzaszcz

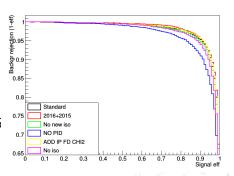
 ${
m B}^0
ightarrow {
m K}^* \mu^- \mu^+$ meeting, CERN October 25, 2017

 $^{1}/_{6}$

Strategy

Strategy

Keep things as close to Run1 as possible



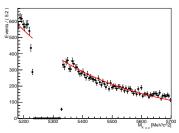
M.Chrzaszcz (CERN) BDT update

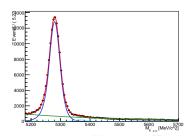
Reminder

⇒ We decided to use the old isolation and 2016 data for training only.

⇒ See previous slides: https://indico.cern.ch/event/675

M.Chrzaszcz (CERN)

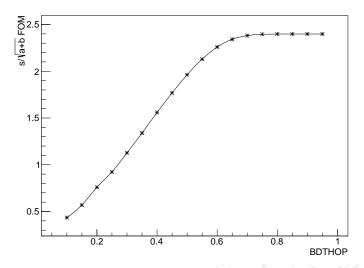

BDT update


BDT optimization

⇒ Let's follow the last year procedure:

$$s_{\text{non-rez}} = s_{\text{J/}\psi} * \epsilon_{\text{non-rez}} / \epsilon_{\text{J/}\psi}$$

- \Rightarrow For now let's assume the $rac{\epsilon_{
 m non-rez}}{\epsilon_{J/\psi}}=1.$
- \Rightarrow We scan the BDT cut fitting both the side-band and the resonant region:


 \Rightarrow From this we know $s_{\mathrm{J/}\!\psi}$ and b and calculate:

$$FOM = \frac{s}{\sqrt{s+t}}$$

4/6

BDT optimization

⇒ Something is wrong:

M.Chrzaszcz (CERN) BDT update

Conclusions

- Now I need to debug my code and update the efficiency calculations to see if this makes a difference.
- For now please us the old cut: BDT>0.2 as it has similar $\frac{s}{b}$ ratio on the new tuples.
- Tuples are here: /eos/lhcb/wg/RD/Bd2Kstmumu/BDT

M.Chrzaszcz (CERN)

BDT update

Backup

