Analog Section for the Silicon Strip Detectors of the Super B SVT Inner Layers

Massimo Manghisoni^{1,2}, Luigi Gaioni², Lodovico Ratti^{3,2}, Valerio Re^{1,2}, Gianluca Traversi^{1,2}

> ¹ Università degli Studi di Bergamo ² INFN Sezione di Pavia ³ Università degli Studi di Pavia

December 13, 2011

Electronic Readout for SVT Inner Layers (L0-L3)

- Microstrips and striplets detectors are the baseline option for the design of the SVT fast (Layers 0 to 3) front-end at SuperB
- ASIC: the signals from the silicon strip detectors will be processed by a custom-designed IC based on a 130 nm planar technology with 128 channels
- Analog Channel
 - amplification
 - filtering
 - threshold discrimination
 - 3-4 bit analog information about the signal amplitude
- Main requirements
 - Operating temperature: <40 °C
 - Radiation tolerance: >3 Mrad/year for 10 years
 - Power dissipation: <4 mW/channel
 - Signal polarity: readout channel should be capable of reading signals from both P and N-side of the strip detectors
 - Dynamic range: 10-15 MIP charge
 - Analog Resolution: 0.2 MIP minimum input charge
 - Hit efficiency: >95% at design luminosity
 - Peaking Time: ≤25 ns for Layer 0
 - Signal-to-Noise Ratio: >20
 - Threshold dispersion: <300 e- rms
- Simulation results for a preliminary version of the charge preamplifier and the shaping stage of the SVT inner layers will be shown

Analog channel block diagram

The analog channel consists of

- Charge-sensitive preamplifier with gain selection (1 bit)
- Unipolar semi-Gaussian shaper with polarity (1 bit) and peaking time (2 bit) selection options
- Symmetric baseline restorer to achieve baseline shift suppression, may be included or not (1 bit)
- Hit discriminator threshold circuit and comparator
- 3-4 bit analog-to-digital conversion will be performed by a Flash ADC or by means of a Time-Over-Threshold (TOT) detection

Charge Sensitive Amplifier

Main design features				
Chip Bias	1.2 V			
V_{DD}				
PA input	2000/0.2			
W/L				
PA input	500 μA			
I_D				
Power	1.1 mW			
consumption				
Feedback	400 fF			
C_{f1} , C_{f2}	100 fF			
Reset	100 nS			
G_f				

- Architecture: active folded cascode (with local feedback) loaded by an active cascoded load
- Sensitivity: low gain 2.0 mV/fC ($C_f = C_{f1} + C_{f2}$), high gain 2.5 mV/fC ($C_f = C_{f1}$)
- Reset: performed by a time continuous feedback network implemented with a differential pair ($\tau \approx 5~\mu s$ at low gain and $\approx 4~\mu s$ at high gain)

CSA response and dynamic range

- Rise time: $t_r=7$ ns for both holes and electrons
- Charge sensitivity: low gain 1.99 mV/fC (electrons and holes), high gain 2.48 mV/fC (electrons and holes)
- Dynamic range: the CSA covers the full dynamic range of 15 MIP (240 ke- in L0) for both the input signal polarities and gain settings
- Linearity: <0.2 %

Shaping circuit

- Shaping function: Unipolar semi-Gaussian (RC2-CR)
- Polarity selection (1 bit): allows to operate with signals delivered both from n- and p- sides of double-sided strip detectors
- Peking time selection (2 bit): obtained by setting the values of capacitances in the shaper according to the following relationships (with t_{P0}=25 ns, C0=50 fF and n=1,2,4,8):

$$t_P = n \cdot t_{P0}$$

$$C_P = n \cdot C0$$

$$C_1 = n \cdot 4 \cdot C0$$

$$C_2 = n \cdot 2 \cdot C0$$

Peaking Time Selection

	Peaking Time [ns]				
n	Nominal	Simulated			
1	25	30			
2	50	55			
4	100	100			
8	200	190			

- Good agreement between ideal (black lines) and simulated (colored lines) shaping functions and peaking times
- A better matching can be obtained with a fine tuning of the shaping circuit capacitances (to be done)

Shaper Output response and dynamic range

- Charge sensitivity: low gain ≈4.5 mV/fC (electrons and holes), high gain ≈5.5 mV/fC (electrons and holes)
- Dynamic range: the shaper covers the full dynamic range of 15 MIP (240 ke- in L0) for both the input signal polarities and gain settings
- Linearity: worst in high gain setting (\approx 3.5 %) with respect to low gain setting (\approx 2 %)

Equivalent Noise Charge

Layer	C_D	t_p	ENC	ENC	S/N	
	[pF]	[ns]	R_S [e rms]	CSA [e rms]	(1 MIP)	
0	10	25	220	580	26	
1	25	100	460	650	30	
2	30	100	590	720	26	
3	35	200	410	660	31	
	0 1 2	[pF] 0 10 1 25 2 30	[pF] [ns] 0 10 25 1 25 100 2 30 100	[pF] [ns] R _S [e rms] 0 10 25 220 1 25 100 460 2 30 100 590	[pF] [ns] R _S [e rms] CSA [e rms] 0 10 25 220 580 1 25 100 460 650 2 30 100 590 720	

 $\mbox{S/N} > \!\! 20$ for all the layers (1 MIP is 16 ke- in L0 and 24 ke- in L1 to L3)

S/N ratio vs t_P at 1 MIP

- \bullet L1 and L2: S/N remains $>\!\!20$ moving from the foreseen peking time of 100 ns to 50 ns
- L3: S/N remains >20 moving from 200 ns to 100 ns

Conclusions

- Simulation of the charge preamplifier and the shaping stage of the SVT inner layers almost complete
- Power consumption <4 mW/channel
- Charge sensitivity: adjust the low gain to best fit the 2/3 ratio as for the charge delivered by sensors belonging to different layers
- Threshold adjustment at strip level could be necessary due to the low value of charge sensitivity
- Good performance in terms of noise (S/N>20 for all layers)
- In next weeks the design of the remaining blocks (BLR and threshold discriminator) will be also completed in order to have a preliminary version of the channel ready for the TDR

Backup Slides

Microstrip detector: proposed layer grouping

Layer	C _D [pF]	available t _p [ns]	selected t _p [ns]	ENC from R _s [e rms]	ENC [e rms]	Channel width [µm]	Hit rate/ strip [kHz]	Efficiency 1/(1+N)
0	11.2	25, 50, 100, 200	25	220	740	3000	2060	0.890
1	26.7		100	460	940		697	0.857
2	31.2		100	590	1100		422	0.908
3	34.4		200	410	940		325	0.865
_	4 52.6	400, 600, 800.	500	490	1000	9000	47	0.947
4			600	440	940			0.937
_		1000 (or 500 and 1000)	800	560	1090		28	0.949
5	67.5		1000	500	1030			0.937