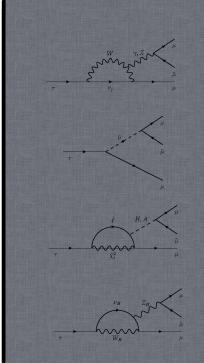
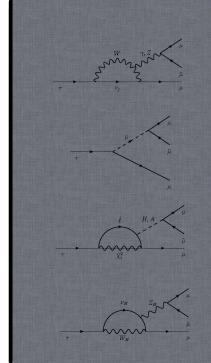
MC, η , TMVA


Marcin Chrząszcz^{1,2}, Nicola Serra¹

¹ University of Zurich , ² Institute of Nuclear Physics, Krakow,

25th July 2013



MC studies

 η fits

TMVA

Plans for next week

MC Signal

Reminder:

- In 2011 we simulated a mixture of $\tau \rightarrow 3\mu$.
- We found out that the cross section is wrong in MC.
- We reweighed all this distributions to match the correct cross section.
- But what with DPC? This can't be reweighed!
- Let's check how ϵ_{DPC} depends on signal channel.

Let's run Pythia6 with 8 TeV CM energy. With old decfile(aka the wrong mixture of $c\bar{c}$ and $b\bar{b}$. We get:

- *ϵ_{DPC}* = 17.9%
- For 7*TeV*% we had:17.7%
- This part looks reasonable. We would expected a small gain.

Cross check procedure

We then simulate two samples for each of 5 sources of τ .

- 1st Sample with Geometry+Daughter¹ Cuts. *e*_{DPC+DAU}
- 2nd Sample with Daughter Cut. ϵ_{DAU}

¹Daugher cuts forces au to come from a specific mother. Ex. B.

au source	$\epsilon_{\textit{DPC+DAU}}$ [%]	$\epsilon_{DAU}[\%]$	$\epsilon_{DPC}[\%]$
$D \rightarrow \tau$	12.12 ± 0.07	32.71 ± 0.13	18.5 ± 0.1
$B \rightarrow D \rightarrow \tau$	1.36 ± 0.01	$\textbf{3.99}\pm\textbf{0.03}$	17.0 ± 0.1
$D_s \rightarrow \tau$	11.79 ± 0.07	31.53 ± 0.13	18.6 ± 0.1
$B \rightarrow D_s \rightarrow \tau$	1.75 ± 0.01	5.04 ± 0.03	17.4 ± 0.1
$B \rightarrow \tau$	5.16 ± 0.05	14.85 ± 0.13	17.4 ± 0.2

Let's take wrong weights from MC and calculate the ϵ_{DPC} : $\epsilon_{DPC,WRONG} = 17.86$, with agriment with simulating the wrong mixture from beginning!

MC Signal

au source	$\epsilon_{\textit{DPC+DAU}}$ [%]	ϵ_{DAU} [%]	ϵ_{DPC} [%]
$D \rightarrow \tau$	12.12 ± 0.07	32.71 ± 0.13	18.5 ± 0.1
$B \rightarrow D \rightarrow \tau$	1.36 ± 0.01	3.99 ± 0.03	17.0 ± 0.1
$D_s \rightarrow \tau$	11.79 ± 0.07	31.53 ± 0.13	18.6 ± 0.1
$B \rightarrow D_s \rightarrow \tau$	1.75 ± 0.01	5.04 ± 0.03	17.4 ± 0.1
$B \rightarrow \tau$	5.16 ± 0.05	14.85 ± 0.13	17.4 ± 0.2

Let's take wrong weights from MC and calculate the ϵ_{DPC} : $\epsilon_{DPC,WRONG} = 17.86\%$, with agriment with simulating the wrong mixture from beginning!

If we take the correct weights we obtain:

 $\epsilon_{DPC,CORRECT} = 18.60\%$. We underestimated our efficiency!

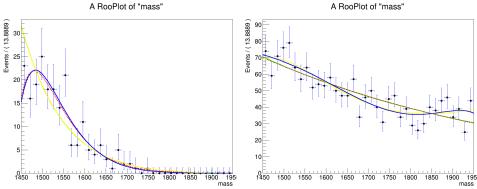
MC Signal

au source	$\epsilon_{DPC+DAU}$ [%]	ϵ_{DAU} [%]	$\epsilon_{DPC}[\%]$
$D \rightarrow \tau$	12.12 ± 0.07	32.71 ± 0.13	18.5 ± 0.1
$B \rightarrow D \rightarrow \tau$	1.36 ± 0.01	3.99 ± 0.03	17.0 ± 0.1
$D_s \rightarrow \tau$	11.79 ± 0.07	31.53 ± 0.13	18.6 ± 0.1
$B \rightarrow D_s \rightarrow \tau$	1.75 ± 0.01	5.04 ± 0.03	17.4 ± 0.1
$B \rightarrow \tau$	5.16 ± 0.05	14.85 ± 0.13	17.4 ± 0.2

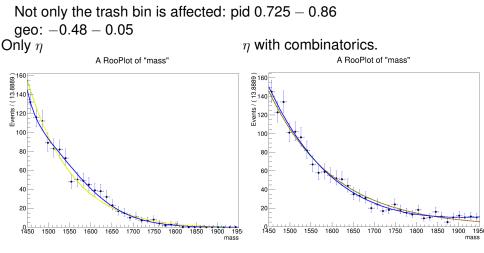
How ever the overall effect will be smaller cuz the same thing will happen for the normalization channel.

I have found an other disturbing thing. Lets compare pythia 6 with pythia8:

	$\epsilon_{DPC}[\%]$
Pythia 6	17.9
Pythia 8	19.1

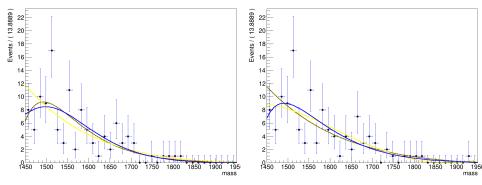

This looks worse than it is. Jon checked and this happens not only to $\tau \rightarrow 3\mu$. Turn out this is common. $B_s \rightarrow \mu\mu$ aslo has the same problem. However thanks to normalization this the ratio of efficiencies changes by 0.1%. We are safe anyway.

- Till yesterday we took η for fitting directly from MC.
- But how much eta is there?
- We might have combinatorial background with partially reconstructed η .
- Lots of thanks to Paul for speedy implementation of this idea!
- To increase the sensitivity I took left mass range larger! Make the fit more stable.


 η fits

Extreme case: Trash bins Only η

η with combinatorics.



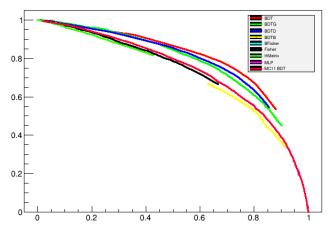
As old Chinese wisdom says: "One event can make a difference" Not only the trash bin is affected: pid 0.6 - 0.65geo: 0.65 - 0.74Only η with combinatorics.

Conclusions on η

- 23% of events in the ntuple are background.
- Much better shape of η .
- PDF similar in each bin!
- Much smaller linkage of η to mass window!
- PDFs are ready for fitting with 2012 data!

Kaggle (leading machine learning competition platform).

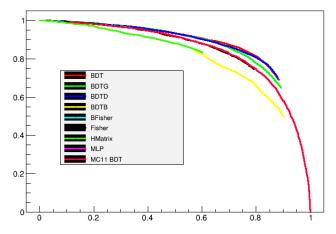
- If you notice how people win this competition; you'll notice that sometimes people combine two or more algorithm into ensemble and get better results.
- This is called blending.
- Isn't $\tau \rightarrow 3\mu$ perfect environment to play?


First attempts

- Let's take our background produced so far.
- Already a comparable sample to 2011! Generator cuts are doing their job.
- Let's train each signal on separate source of τ .

We really suck in selecting this channel.

ROC curves



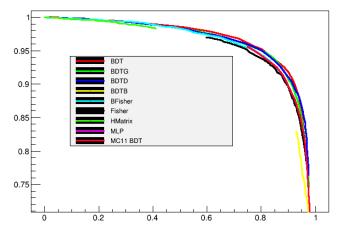
M.Chrząszcz, N.Serra 2013

Update on analysis

$B \rightarrow D_s \rightarrow \tau$

On the biggest contributing channel we are quite optimal. ROC curves

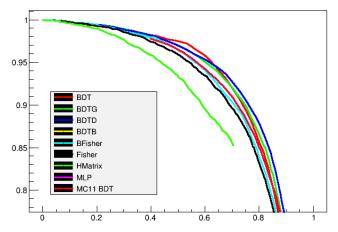
M.Chrząszcz, N.Serra 2013


Update on analysis

TMVA

12/18

On the biggest contributing channel we are quite optimal. ROC curves

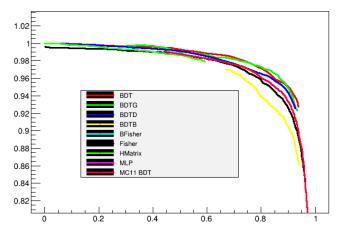

M.Chrząszcz, N.Serra 2013

Update on analysis

TMVA

$B \rightarrow D^+ \rightarrow \tau$

On the biggest contributing channel we are quite optimal. ROC curves

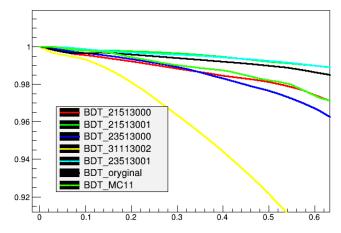


M.Chrząszcz, N.Serra 2013

Update on analysis

On the biggest contributing channel we are quite optimal. ROC curves

M.Chrząszcz, N.Serra 2013


Update on analysis

TMVA

15/18

Comparison on mix sample

On the biggest contributing channel we are quite optimal. ROC curves

M.Chrząszcz, N.Serra 2013

Update on analysis

Conclusions on TMVA

- Each of the signal components is enormously larger than MVA trained on mix.
- Method looks very promising if we can find a nice blending method(work for next week).
- Mayby discusion on TMVA/MatrixNet/Neurobayes is next to leading order effect compared to this method?

Conclusions on TMVA

- Finish producing cc bck
- Continue blending.
- Finish calculating new 2D binning optimisation(last night it was still calculating).
- Start Normalizing the η
- Produce Normalization channel MC.