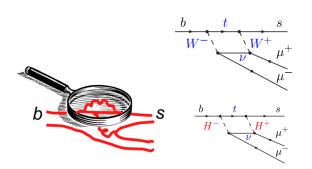
Rare beauty and charm decays at LHCb

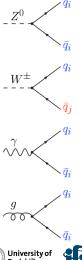
Marcin Chrząszcz^{1,2} on behalf of the LHCb collaboration

 $^{\ 1}$ University of Zurich, $^{\ 2}$ Institute of Nuclear Physics, Krakow

Heavy Quarks and Leptons 2014

August 25, 2014


- Rare B decays:
 - B \rightarrow K $\pi\pi\gamma$
 - B $\rightarrow \mu\mu$.
 - b \rightarrow s $\ell\ell$.
- Oharm decays:
 - D $\rightarrow \mu\mu$.



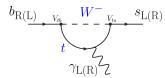
Why rare decays?

- CKM structure in SM allows only the charged interactions to change flavour.
 - Other interactions are flavour conserving.
- One can escape the CKM structure and produce $b \rightarrow s$ and $b \rightarrow d$ only at loop level.
 - This kind of processes are suppressed in SM \rightarrow Rare decays.

Operator Product Expansion and Effective Field Theory

$$H_{eff} = -\frac{4G_f}{\sqrt{2}}VV^* \sum_i \underbrace{\begin{bmatrix} C_i(\mu)O_i(\mu) + C_i'(\mu)O_i'(\mu) \\ \text{left-handed} \end{bmatrix}}_{\text{ieft-handed}} \underbrace{\begin{bmatrix} C_i(\mu)O_i(\mu) + C_i'(\mu)O_i'(\mu) \\ \text{ieght-handed} \end{bmatrix}}_{\text{ieght-handed}}$$

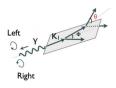
i=1.2 Tree

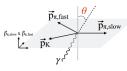

i=S Scalar penguin

i=P Pseudoscalar penguin

Radiative decays

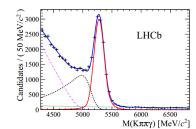
- $B^0 \to K^* \gamma$ first observed penguin!
 - CLEO, [PRL, 71 (1993) 674]
- ullet B-factories probed NP measuring, inclusively/ semi-inclusively $\mathcal{B}(\mathsf{b} \to \mathsf{s} \gamma)$
- Is there anyway LHCb can contribute?
 - Measurements of $\mathcal{B}(\mathsf{b} \to \mathsf{s} \gamma)$ very difficult.
 - Can probe probe polarization!

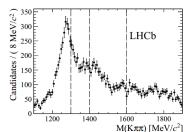

- In SM, photons form b \rightarrow s γ decays are left handed.
 - Charged current interactions: $C_7/C_7' \sim m_{\rm b}/m_{\rm s}$
- Can test C_7/C_7' using:
 - Mixing induced CP violation: Atwood et. al. PRL 79 (1997) 185-188
 - Λ_b baryons: Hiller & kagan PRD 65 (2002) 074038



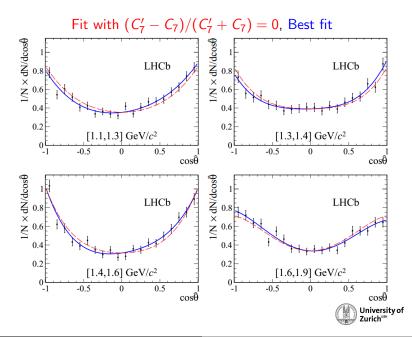
Photon polarization from $B^+ \to K^+\pi^-\pi^+\gamma$

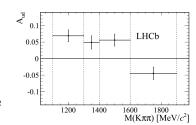
- OR: Study B \rightarrow K** γ decays like B⁺ \rightarrow K₁(1270) γ
 - Gronau & Pirjol PRD 66 (2002) 054008
- The trick is to get the photon polarization from the up-down asymmetry of photon direction in the $K\pi\pi$ rest frame.
 - No asymmetry → Unpolarised photons.
- Conceptionally this measurement is similar to the Wu experiment, which first observed parity violation.





$B^+ o K^+ \pi^- \pi^+ \gamma$ at LHCb

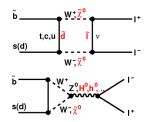

- LHCb looked at $B^+ \to K^+\pi^-\pi^+\gamma$, using un-converted photons.
- Got over 13.000 candidates in 3 fb^{-1} !
- Phys. Rev. Lett. 112, 161801
- $K^+\pi^-\pi^+$ system has variety of resonances.
 - $K\pi\pi\pi$ system studied inclusively.
 - Bin the mass and look for polarization there.



Up-down asymmetry

- Combining the 4 bins, gives 5.2σ significance from no photon polarization hypothesis.
- Unfortunately without understanding the hadron system it is impossible to tell if the photon is left or right -handed.

 \rightarrow First observation of photon polarization in b \rightarrow s γ !

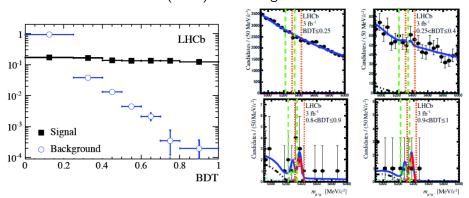

 $B^0 \rightarrow \mu^+\mu^-$

 Clean theoretical prediction, GIM and helicity suppressed in the SM:

•
$$\mathcal{B}(\mathsf{B}_\mathsf{s}^0 \to \mu^- \mu^+) = (3.65 \pm 0.23) \times 10^{-9}$$

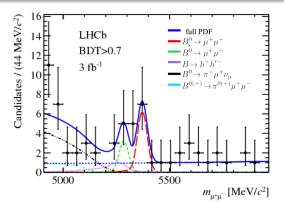
•
$$\mathcal{B}(B^0 \to \mu^- \mu^+) = (1.06 \pm 0.09) \times 10^{-10}$$

- Sensitive to contributions from scalar and pesudoscalar couplings.
- Probing: MSSM, higgs sector, etc.
- In MSSM: $\mathcal{B}(\mathsf{B}^0_\mathsf{s} \to \mu^- \mu^+) \sim \mathsf{tg}^6 \, \beta/m_A^4$



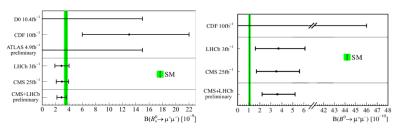
$B^0 ightarrow \mu^+ \mu^-$ searches

 Background rejection power is a key feature of rare decays → use multivariate classifiers (BDT) and strong PID.


• Normalize the BF to $B^+ \to J/\psi(\mu\mu)K^+$ and $B^0 \to K\pi$.

$B^0 \to \mu^+ \mu^-$ Results

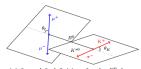
- Nov. 2012:
 - First evidence 3.5σ for $B^0 \rightarrow \mu^+\mu^-$. with $2.1~fb^{-1}$.
- Summer 2013:
 - Full data sample:
 3 fb⁻¹.


- Measured BF: $\mathcal{B}(\mathsf{B}^0_\mathsf{s} \to \mu^- \mu^+) = (2.9^{+1.1}_{-1.0}(\textit{stat.})^{+0.3}_{-0.1}(\textit{syst.})) \times 10^{-9}$
- 4.0σ significance!
- $\mathcal{B}(B^0 \to \mu^- \mu^+) < 7 \times 10^{-10}$ at 95% CL
- PRL 110 (2013) 021801
- CMS result: PRL 111 (2013) 101805

LHCb+CMS Combination

$$\mathcal{B}(\mathsf{B}^0_\mathsf{s} o \mu^- \mu^+) = (2.9 \pm 0.7) imes 10^{-9} \ \mathcal{B}(\mathsf{B}^0 o \mu^- \mu^+) = (3.6^{+1.6}_{-1.4}) imes 10^{-10}$$

Full combination CMS+LHCb with simultaneous fit close to completion!


• LHCb-CONF-2013-012

$B^0 \to K^* \mu \mu$ angular distributions

- Can probe photon polarization using virtual photons in b → sℓℓ.
- LHCb favourite: $B^0 \to K^* \mu \mu$.
- Sensitive to lot of new physics models.
- Decay described by three angles θ_I, θ_K, ϕ and dimuon invariant mass q^2 .
- Analysis is performed in bins of q^2 .

(a) θ_K and θ_ℓ definitions for the B^0 decay

$B^0 o K^* \mu \mu$ angular distributions

Angular distributions depends on 11 angular terms:

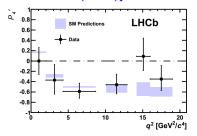
$$\begin{split} \frac{\mathrm{d}^4 \Gamma[B^0 \to K^{*0} \mu^+ \mu^-]}{\mathrm{d} \cos \theta_\ell \, \mathrm{d} \cos \theta_K \, \mathrm{d} \phi \, \mathrm{d} q^2} &= \frac{9}{32\pi} \, \left[\, \, J_1^{\mathrm{S}} \sin^2 \theta_K + J_1^{\mathrm{C}} \cos^2 \theta_K + J_2^{\mathrm{S}} \sin^2 \theta_K \cos 2\theta_\ell + J_2^{\mathrm{C}} \cos^2 \theta_K \cos 2\theta_\ell + J_2^{\mathrm{C}} \cos^2 \theta_K \cos 2\theta_\ell + J_2^{\mathrm{C}} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + J_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + J_2^{\mathrm{C}} \sin 2\theta_K \sin 2\theta_K \sin 2\theta_K \sin 2\theta_\ell \cos \phi + J_3^{\mathrm{C}} \sin 2\theta_K \sin 2\theta_K$$

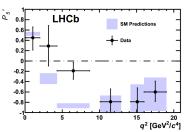
where the J_i are bilinear combinations of helicity amplitudes.

- Not enough events in our data sample to fit for 11 parameters
 → need to simplify!
- Can use symmetries, to reduced the parameters to 9 → still a bit large!

$B^0 \longrightarrow K^* \mu \mu$ Folding

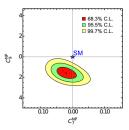
- One can simplify the angular distribution by folding: eg. $\phi \to \phi + \pi$ for $(\phi < 0)$.
- Cancels terms with $\cos \phi$ and $\sin \phi$.

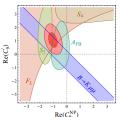

$$\begin{split} \frac{\mathrm{d}^4 \Gamma[B^0 \to K^{*0} \mu^+ \mu^-]}{\mathrm{d} \cos \theta_\ell \, \mathrm{d} \cos \theta_K \, \mathrm{d} \phi \, \mathrm{d} q^2} = \frac{9}{32 \pi} \left[\ J_1^s \sin^2 \theta_K + J_1^c \cos^2 \theta_K + J_2^s \sin^2 \theta_K \cos 2\theta_\ell + J_2^c \cos^2 \theta_K \cos 2\theta_\ell + J_3^c \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + \underbrace{J_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi}_{\text{Los} \phi} + \underbrace{J_5 \sin 2\theta_K \sin \theta_\ell \cos \phi}_{\text{Los} \phi} + \underbrace{J_6 \cos^2 \theta_K \cos \theta_\ell + J_7 \sin 2\theta_K \sin \theta_\ell \sin \phi}_{\text{Los} \phi} + \underbrace{J_6 \sin 2\theta_K \sin 2\theta_\ell \sin \phi}_{\text{Los} \phi} + \underbrace{J_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi}_{\text{Los} \phi} \right] \end{split}$$



$B^0 o K^* \mu \mu$ angular distributions

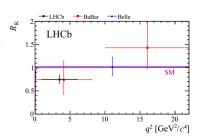
 Different foldings cancel different angular observables. [PRL 111 191801 (2013)]


- Observables $P'_{4,5} = S_{4,5} / \sqrt{F_L(1 F_L)}$
- Leading form-factor uncertainties cancel.
- In 1 fb^{-1} , LHCb observes a local discreapncy of 3.7 σ in P_5' .
- Probability that at least one bin varies by this much is 0.5%.
- SM prediction form: JHEP 05 (2013) 137



Understanding the $B^0 \longrightarrow K^* \mu \mu$ anomaly 1/2

- Matias, Decotes-Genon & Virto performed a global fit to the avaible $b \to s \gamma$ abd $b \to s \ell \ell$.
- Found 4.5σ discrepancy from SM.
- Fit favours $C_9^{NP} = 1.5$
- PRD 88 074002 (2013)
- Straub & Altmannshofer performed a global analysis and found discrepancies at the level of 3σ . Data again best describes a modified C_9 .
- Data can be explained by introducing a flavour changing Z' boson, with mass $\mathcal{O}(10 \ TeV)$
- EPJC 73 2646 (2013)



Lepton universality

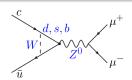
 If Z' is responsible for the P'₅ anomaly, does it couple equally to all flavours?

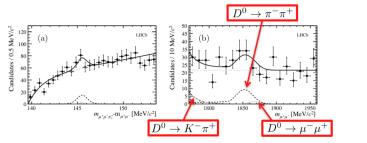
$$R_{\rm K} = \frac{\int_{q^2=1\,{\rm GeV}^2/c^4}^{q^2=6\,{\rm GeV}^2/c^4}({\rm d}B[B^+\to K^+\mu^+\mu^-]/{\rm d}q^2){\rm d}q^2}{\int_{q^2=1\,{\rm GeV}^2/c^4}^{q^2=6\,{\rm GeV}^2/c^4}({\rm d}B[B^+\to K^+e^+e^-]/{\rm d}q^2){\rm d}q^2} = 1\pm \mathcal{O}(10^{-3})\;.$$

- Challenging analysis.
- Migration of events modeled by MC.
- Correct bremsstrahlung.
- Take double ratio with $B^+ \to J/\psi K^+$ to cancel systematics.
- In $3fb^{-1}$, LHCb measures $R_K = 0.745^{+0.090}_{-0.074}(stat.)^{+0.036}_{-0.036}(syst.)$
- Consistent with SM at 2.6σ .

LHCb-PAPER-2014-024 [Preliminary],

Belle [PRL 103 (2009) 171801] ,


BaBar [PRD 86 (2012) 032012]



FCNC in charm decays

- GIM cancelation effective in $c \rightarrow u$ transitions due to small size of m_b .
- SM prediction: $\mathcal{B}(\mathsf{D}^0 \to \mu\mu) \sim 6 \times 10^{-11}$

- Use $\mathsf{D}^{*\pm}$ and exploit small Δm for background suppression.
- Limitation is $\pi \to \mu$ mis-id.
- Limit: $\mathcal{B}(\mathsf{D}^0 \to \mu\mu) < 6.2 \times 10^{-9}$ at 90% CL
- PLB 725 (2013) 15-24

Conclusions

- Rare decays play important role in hutting NP.
- Can access NP scales beyond reach of GPD.
- Tension in b \rightarrow s $\ell\ell$, theory correct?
- List of decays presented in this talk is just a tip of iceberg:
 - Please look at ours: isospin, A_{CP}.
 - More are on their way.

