Quo Vadis P'5 ?

Marcin Chrzaszcz mchrzasz@cern.ch

on behalf of the ${
m B}
ightarrow {
m K}^* \mu \mu$ team

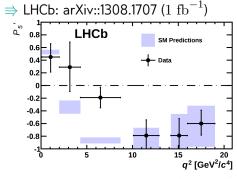
Analysis and software week, CERN April 28, 2017

The road (towards NP ?)

 \Rightarrow Several theory authors proposed to measure a "clean" observable:

$$\mathbf{P}_5' = \frac{S_5}{\sqrt{F_L(1 - F_L)}}$$

 \Rightarrow At leading order of α_s and m_b expansion the form factors cancel arxiv::1207.2753


What we were promised:

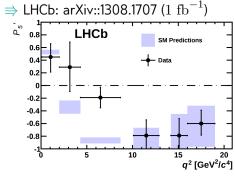
The road (towards NP ?)

 \Rightarrow Several theory authors proposed to measure a "clean" observable:

$$\mathbf{P}_5' = \frac{S_5}{\sqrt{F_L(1 - F_L)}}$$

 \Rightarrow At leading order of α_s and m_b expansion the form factors cancel arxiv::1207.2753

What we were promised:



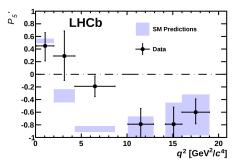
The road (towards NP ?)

 \Rightarrow Several theory authors proposed to measure a "clean" observable:

$$\mathbf{P}_5' = \frac{S_5}{\sqrt{F_L(1 - F_L)}}$$

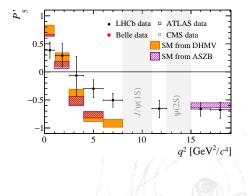
 \Rightarrow At leading order of α_s and m_b expansion the form factors cancel arxiv::1207.2753

What we were promised:


What we got:

Quo Vadis P_5' ?

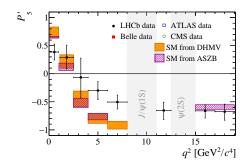
The history of P'_5


⇒ 2013 LHCb: arXiv::1308.1707

The history of P'_5

\Rightarrow Theory: DHMV: arXiv::1407.8526 ASZB: arXiv::1411.3161

⇒ 2013 LHCb: arXiv::1308.1707 ⇒ 2015 LHCb: arXiv::1512.0444



Quo Vadis P_5' ?

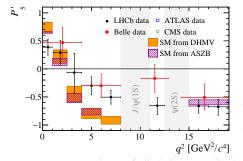
´/15

The history of P_5'

⇒ 2013 LHCb:
 arXiv::1308.1707
 ⇒ 2015 LHCb:
 arXiv::1512.0444

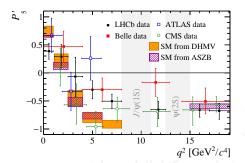
We generated a lot of interests :) The paper has now 115 citations!
 Two alliances were formed:

⇒ We have new physics:


\Rightarrow We have QCD effects:

The history of P'_5

 \Rightarrow Theory: DHMV: arXiv::1407.8526 ASZB: arXiv::1411.3161


 ⇒ 2013 LHCb: arXiv::1308.1707
 ⇒ 2015 LHCb: arXiv::1512.0444
 ⇒ 2016 Belle: arXiv::1604.04042

The history of P'_5

⇒ 2013 LHCb: arXiv::1308.1707 ⇒ 2015 LHCb: arXiv::1512.0444 \Rightarrow 2016 Belle: arXiv::1604.04042 ⇒ 2017: ATLAS-CONF-2017-023 (20.5 fb^{-1}) and CMS-PAS-BPH-15-008 (20.8 fb^{-1})

 \Rightarrow Theory: DHMV: arXiv::1407.8526 ASZB: arXiv::1411.3161

Details about their ATLAS & CMS analysis 1/2

- \Rightarrow The results are based on Run1 data.
- \Rightarrow The measurement of P'_5 is possible knowing the B flavour.
- \Rightarrow In LHCb we have the RICH, but ATLAS and CMS don't, so the flavour is assigned by checking two possible mass hypothesis for K^* and choosing the one closer to the SM value (13% for CMS and 11% for ATLAS).
- \Rightarrow The analysis follows our LHCb results from 1 fb⁻¹:
- Not enough events to perform the full angular fit.
- Fold the angles to reduce the number of observables
- In this procedure you lose correlations between the observables
- \Rightarrow The acceptance corrections both in CMS and ATLAS parametrized as $\epsilon(\cos\theta_l,\cos\theta_k,\phi,m)$ in each of the q^2 bin.

Details about their ATLAS & CMS analysis 2/2

 \Rightarrow Angular acceptance parametrized by polynomial functions.

⇒ Determination of F_L , P_1 , P'_4 , P'_5 , P'_6 , P'_8 and/or S_i i = 3, 4, 5, 7, 8.

 \Rightarrow Systematic for S-wave (small)

 \Rightarrow Main systematics: background: charm, partRECO, fake K^* .

 $\Rightarrow B \rightarrow K^* J/\psi$ used ONLY for mass PDF.

- \Rightarrow Angular acceptance parametrized
- by KDE and sampled histograms.
- \Rightarrow Determination of only P_1 and P'_5 .
- \Rightarrow Swave fraction inferred from

previous measurement.

 \Rightarrow Main systematics: Control channel differences.

 $\Rightarrow B \rightarrow K^* J/\psi$ used for systematics.

Global analysis

 \Rightarrow Two main players on the market: \Rightarrow J. Matias, et. al.

 \Rightarrow Measurements taken into the analysis:

- Angular and Br of $B \to K^* \mu \mu$
- Angular and Br of $B^0_s \to \phi \mu \mu$
- Angular and Br of ${
 m B}
 ightarrow {
 m K} \mu \mu$
- Br ${\rm B} \to X_s \mu \mu$ and ${\rm b} \to {\rm s} \gamma$
- $B_s^0 \to \mu\mu$

 \Rightarrow D. Straub, et. al.

 \Rightarrow Measurements taken into the analysis:

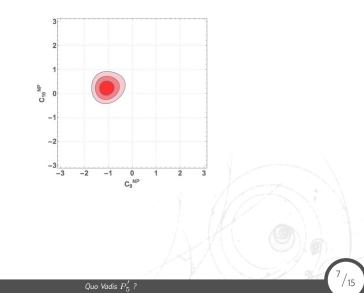
- Angular and Br of $B \to K^* \mu \mu$
- Angular and Br of $B^0_s \rightarrow \phi \mu \mu$
- Angular and Br of $B \to K \mu \mu$
- Br $\mathbf{B} \to X_s \mu \mu$

 \Rightarrow There are also subtle difference in the theory treatment of form factors.

\Rightarrow LHCb (3 fb⁻¹):

Coefficient	Best Fit	$Pull_{\mathrm{SM}}$
C_9	-1.09	4.5
$C_9 = -C_{10}$	-0.68	4.2
$C_9 = -C'_9$	-1.06	4.8
$C_9 = -C_{10}$ and $C_9' = -C_{10}'$	-0.69	4.1

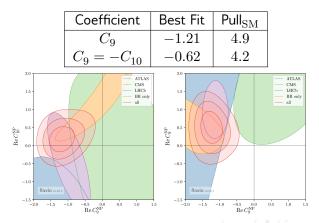
\Rightarrow LHCb (3 fb⁻¹) + Belle:


Coefficient	Best Fit	$Pull_{\mathrm{SM}}$
C_9	-1.12	5.0 (!!!)
$C_9 = -C_{10}$	-0.61	4.4
$C_9 = -C'_9$	-1.05	4.5
$C_9=-C_{10}$ and $C_9^\prime=-C_{10}^\prime$	-0.66	4.6

 \Rightarrow LHCb (3 fb⁻¹) + Belle + ATLAS:

Coefficient	Best Fit	$Pull_{\mathrm{SM}}$
C_9	-1.14	5.2 (!!!)
$C_9 = -C_{10}$	-0.60	4.4
$C_9 = -C'_9$	-1.08	4.9
$C_9=-C_{10}$ and $C_9^\prime=-C_{10}^\prime$	-0.67	4.6

 \Rightarrow LHCb (3 fb⁻¹) + Belle + ATLAS + CMS:

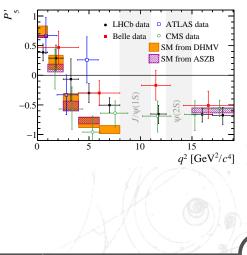

Coefficient	Best Fit	$Pull_{\mathrm{SM}}$
C_9	-1.07	4.9
$C_9 = -C_{10}$	-0.58	4.3
$C_9 = -C'_9$	-1.01	4.6
$C_9=-C_{10}$ and $C_9^\prime=-C_{10}^\prime$	-0.61	4.3

M.Chrzaszcz (UZH)

So what is the significance? D. Straub, et. al. [1703.09189]

 \Rightarrow LHCb (3 fb⁻¹) + CDF + ATLAS + CMS:

 \Rightarrow Both groups came to a similar conclusion!


Quo Vadis P'_5 ? Status Quo P'_5 !

Comments about the CMS result 1/4

 \Rightarrow Both ATLAS and CMS use our folding technique that was used in the 1 fb⁻¹ analysis. \Rightarrow CMS when performing the angular fit fixes the F_L , F_S and A_s from the previous analysis on the same data! \Rightarrow They claim that they check with TOYMC that it is correct. However some doubts remain. ⇒ Feldman-Cousin procedure can underestimate the errors in this case.

⇒ More details on toy validation and or bootstrapping the data would be nice!

Comments about the CMS result 2/4

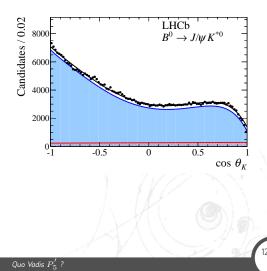
 \Rightarrow There seems to be a structure in the $\cos \theta_l$ distribution.

 \Rightarrow A.Bevan suggested this might be due to a $B \rightarrow D(K\pi\pi)\pi$

Events / (0.05 - Total fit Corr.tag sig 🖌 Mistag sig 50 Background 30 20 0.1 0.2 0.3 0.8 0.4 0.5 0.6 0.9 $\cos(\theta_l)$ CMS Preliminary 20.5 fb⁻¹ (8 TeV) - Data Events / (0.05 q2: 4.30 - 6.00 GeV2 — Total fit Corr.tag sig. Mistag sig Background 30 20 10 0.1 0.2 0.3 0.4 0.5 0.6 0.9 0.7 0.8 cos(0)

 \Rightarrow Can be easily checked with MC.

CMS Preliminary

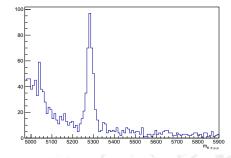

2.00 - 4.30 GeV2

20.5 fb⁻¹ (8 TeV) - Data

Comments about the CMS result 3/4

 \Rightarrow They model the mis-tag fractions from MC.

 \Rightarrow The mis-tag is modelled by MC. Systematic assign from $B \rightarrow K^*J/\psi$ (no q^2 dependence assumed).



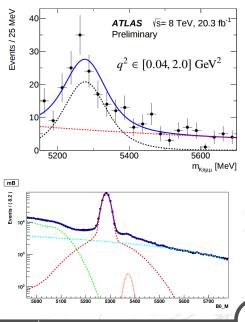
Comments about the CMS result 4/4

 $\begin{array}{c} \label{eq:constraint} \begin{array}{c} \mbox{CMS} & \mbox{Preturnary} & \mbox{20.5} \mbox{ $ b^{+}(6\ensuremath{\, {\rm CMS}}\ensuremath{\, {\rm CMS}}\ensuremath{\, {\rm Preturnary}\ensuremath{\, {\rm CMS}}\ensuremath{\, {\rm CMS}}\ensuremath{\, {\rm SMS}}\ensuremath{\, {\rm CMS}}\ensuremath{\, {\rm SMS}}\ensuremath{\, {\rm SMS}}\ensurem$

 \Rightarrow CMS uses a long range mass window in the $m_{{\rm K}\pi\mu\mu}$ fits.

 ⇒ In LHCb we saw non negligible amount of PARTRECO events.
 ⇒ In their fits they don't account for it.

/ 15


Comments about the ATLAS result

 \Rightarrow ATLAS has much worse mass resolution compared to CMS and LHCb.

 \Rightarrow They cut tight on the $m_{\mathrm{K}\pi\mu\mu}$ as we did.

 \Rightarrow How ever it is not obvious

that they are not affected because of the resolution.

Quo Vadis P'_5 ?

Conclusion

- \Rightarrow The anomaly is alive and well!
- \Rightarrow Inclusion of new results increases the significance.
- \Rightarrow Tension with SM seen in P_5' by Atlas, Belle and LHCb. CMS result in good agreement with SM, but consistent with our results.
- \Rightarrow Some discussion on aspects of the CMS analysis ongoing.
- \Rightarrow Run2 data will confirm or disprove the anomaly (of course the nature of the anomaly is a different question).

Backup

¹⁶/₁₅