Stripping selection for *B* -> *Kφφ*

Marcin Chrząszcz

Why this channel?

You can measure CP and T violation in one go =)

$$B^{\pm} \rightarrow K^{\pm} \phi \phi \qquad B^{\pm} \rightarrow \eta_c K^{\pm} \quad \eta_c \rightarrow \phi \phi$$

 $b \rightarrow s \bar{s} \bar{s}$ penguin $b \rightarrow c \bar{c} \bar{s}$ transition Both channels look similar in the detector: 5 charged kaons.

Direct measurements of CP violation:

$$A_{cp} = \frac{N(B^{-}) - N(B^{+})}{N(B^{-}) + N(B^{+})} \qquad \arg\left(\frac{V_{tb}V_{ts}^{*}}{V_{cb}V_{cs}^{*}}\right) \approx 0$$

CP violation -BaBar results

BaBar Collaboration found: $BR(B^{\pm} \rightarrow K^{\pm}\phi\phi) = (5.6 \pm 0.5 \pm 0.3 \pm) 10^{-6}$ The calculated CP violation (η_c resonance) was:arXiv:1105.5159v1 $A_{CP} = -0.10 \pm 0.08 \pm 0.02$

T violation

The dominating process for this decay is the loop $b->ss\overline{s}$.

Since ϕ decays mostly into two Kaons, one can connect the T violating phase to the angular distributions of Kaons, which can be calculated.

Motivation

T-Odd correlations $\vec{p} \cdot (\vec{e} \times \vec{e})$ in two body decays were studied by BaBar Collaboration[1]. Three body decays provide more T-odd correlations, one of the simplest is: $\vec{s} \cdot (\vec{p}_i \times \vec{p}_j)$. An example decay which provides this kind of correlation is:

$$B^{\pm} \to K^{\pm} \phi \phi$$

By studing helicity angles one can measure T violation. We don't need to know strong phases. Details in backup slides.

[1] BABAR Collaboration, J.G. Smith, hep-ex/0406063, contribution to Moriond QCD proceedings; BELLE Collaboration, K. Abe et al., hep-ex/0408141.

Background

Possible background: $B^{\pm} \rightarrow \phi K^{\pm} K^{-} K^{+}$ $B^{\pm} \rightarrow K^{\pm} K^{-} K^{+} K^{-} K^{+}$ $B^{\pm} \rightarrow f_{0} K \phi$ $B^{\pm} \rightarrow f_{0} K^{\pm} K^{-} K^{+}$

These decays can also be studied with this channel.

Stripping selection, cuts

Cut	Value
Kaons:	
Pt	300 MeV
$\chi^2 IP$	>6
$\chi^2 Track$	<5
Φmeson	
Pt	300 MeV
$\chi^2 IP$	>6
$\chi^2 Vertex$	<25
Mass	<1080 MeV
VDZ	>0

Stripping selection, cuts

Cut	Value
B meson:	
Δm	500 MeV
cos(<i>pt</i> , <i>track</i>)	>0.999
$\chi^2 Vertex$	< 5
$\frac{\chi^2 Lifetime}{NDOF}$	>64

45	Results of stripping testing		
	rate:	0.02%	
	time	0.628 ms	

Matches the stripping requirements.

Backup

Theoretical concepts 2/2

arXiv:hep-ph/0412180

$$\mathbf{F}_{i} = \frac{\int \mathcal{O}_{i} \omega_{i} (\widetilde{u}_{\theta K_{1}}, u_{\theta K_{2}}) d\Gamma}{\sqrt{\int d\Gamma \cdot \int \mathcal{O}_{i}^{2} d\Gamma}} \qquad u_{\theta_{i}} \text{ being } \cos \theta_{i}$$
$$\mathcal{O}_{T_{1}} = |\vec{p}_{B}| \frac{\vec{p}_{K_{1}} \cdot (\vec{p}_{B} \times \vec{p}_{K_{2}})}{|\vec{p}_{B} \times \vec{p}_{K_{1}}||\vec{p}_{B} \times \vec{p}_{K_{2}}|} = \sin \phi,$$
$$\mathcal{O}_{T_{2}} = |\vec{p}_{B}| \frac{(\vec{p}_{B} \cdot \vec{p}_{K_{2}} \times \vec{p}_{K_{1}})(\vec{p}_{B} \times \vec{p}_{K_{1}}) \cdot (\vec{p}_{K_{2}} \times \vec{p}_{B})}{|\vec{p}_{B} \times \vec{p}_{K_{1}}|^{2} |\vec{p}_{K_{2}} \times \vec{p}_{B}|^{2}} = \frac{1}{2} \sin 2\phi,$$

T violation phase

 $\bar{\varepsilon}_i(B) + \bar{\varepsilon}_i(\bar{B}) \propto \sin(\theta_W + \theta_s) + \sin(-\theta_W + \theta_s) = 2\cos\theta_W\sin\theta_s,$ $\bar{\varepsilon}_i(B) - \bar{\varepsilon}_i(\bar{B}) \propto \sin(\theta_W + \theta_s) - \sin(-\theta_W + \theta_s) = 2\sin\theta_W\cos\theta_s.$

Second non vanishing eq. => T violating phase