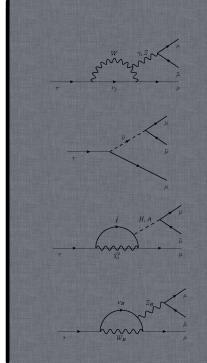

The SuperB factory physics prospects and project status

Marcin Chrząszcz

Institute of Nuclear Physics, Polish Academy of Science, on behave of SuperB collaboration

21st September 2012

Introduction


SuperB Infrasctructure Accelerator Luminosity

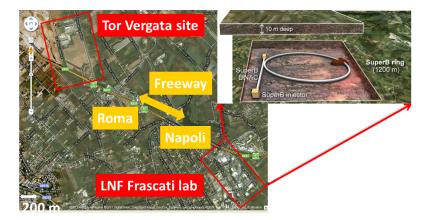
Detector

SVT DCH DIRC EMC and IFR

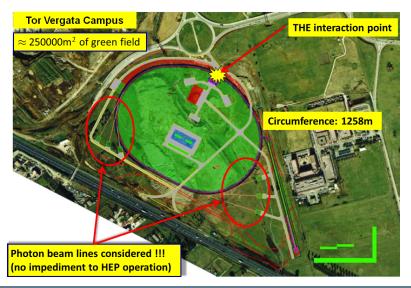
Physics

Rare B Physics TDCP $B \rightarrow X_s \gamma$ LFV CP violation EDM

B factories

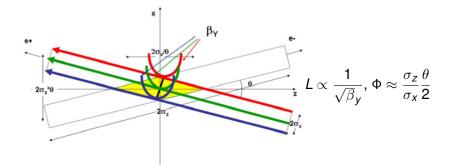

B factories achived a great success over the dozen years. A natural continuation of this project are Super Flavor Factories.

Super Flavor Factories

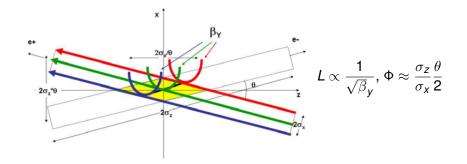

- Data 75ab⁻¹.
- **2** Luminosity $10^{36} cm^{-2} s^{-1}$.
- **③** Flexibility to run on charm threshold with luminosity $10^{35} cm^{-2} s^{-1}$.
- 4 Logitudanal polarization of electron beam 80%.
- Upgradet Babar detector.
- 6 Start of data taking: 2018.
- **7** $10ab^{-1}$ peer year.

we have in 200 metres 3 shops selling tissot

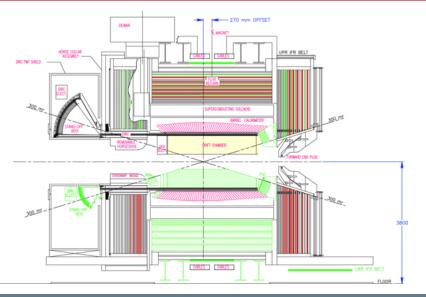
TorVegata Site

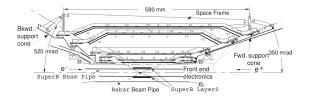


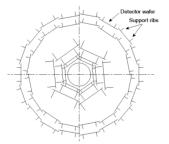
TorVegata Site

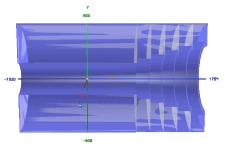


The SuperB factory


Quest for Luminosity

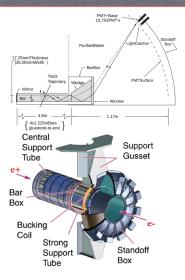

Quest for Luminosity


Recycling, Babar


Silicon Vertex Tracker

- Five layers(1-5) of double-sided silicon strip detectors.
- Radial span 3 15 cm.
- Upgrade the electronics for faster readout.
- Additional Layer 0:
 - **1** Radius \approx 1.5*cm*.
 - 2 Low material budget: $X_0 = 0.5\%$.
 - 3 Two possible technologies: Hybrid Pixels, Double Sided Strip detectors(Striplets).

Drift Chamber



- 40 layers of $\approx 1 \, cm$ cells paralel to beam line.
- Provide momentum and dE dx for low momentum particles(p < 700MeV).

- \approx 10000 channels
- Ocuupancy(3.5% 5%).

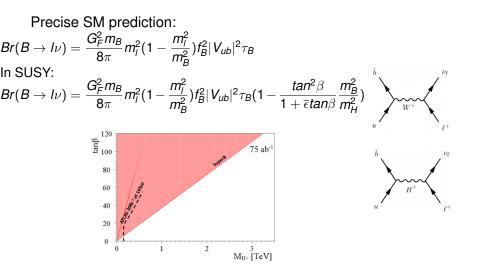
R&D:

- Geometry
- Gas mixture
- aaaa

Detector of Internally Reflected Cherenkov light

- Momentum range 0.7 4 GeV
- Radiator: synthetic fused silica.
- Photon detectors outside field region.
- Radiatoin hard.

Electromagnetic and hadronic calorimeter


Electronamgnetic Calorimeter:

- Coverage 94%of4П
- CsI or LYSO cristals
- Crystal lenght 16 – 17.5X₀
- Radiatoin hard.

Instrumented Flux Return:

- Upgrade form TDC to BIRO
- Scintilators
- Iron reused from Babar
- SiPM

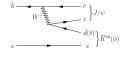
 $\rightarrow \tau \nu$

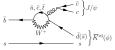
Physics

Time Depended CP

Time Depended CP can be signs of new physics. One has to study set of modes:

 $b \rightarrow s\overline{s}c, b \rightarrow s$


Curent experimental results(SM -observed):


 $\Delta sin(2\beta) = 2.7\sigma$, penguin

 $\Delta sin(2\beta) = 2.1\sigma$, tree

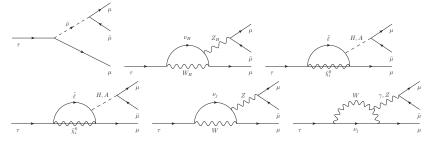
Golden modes in SuperB: $B \rightarrow J/\psi K^0$, $B \rightarrow \eta' K^0$, $B \rightarrow f_0 K_s^0$

Mode	Current Precision			Predicted Precision (75 ab ⁻¹)		
	Stat.	Syst.	$\Delta S^{f}(\text{Th.})$	Stat.	Syst.	$\Delta S^{f}(\text{Th.})$
$J/\psi K_S^0$	0.022	0.010	0 ± 0.01	0.002	0.005	0 ± 0.001
$\eta' K_S^0$	0.08	0.02	0.015 ± 0.015	0.006	0.005	0.015 ± 0.015
$\phi K_S^0 \pi^0$	0.28	0.01	_	0.020	0.010	-
$f_0 K_S^0$	0.18	0.04	0 ± 0.02	0.012	0.003	0 ± 0.02
$K^{0}_{S}K^{0}_{S}K^{0}_{S}$	0.19	0.03	0.02 ± 0.01	0.015	0.020	0.02 ± 0.01
ϕK_S^0	0.26	0.03	0.03 ± 0.02	0.020	0.005	0.03 ± 0.02
$\pi^0 K_S^0$	0.20	0.03	0.09 ± 0.07	0.015	0.015	0.09 ± 0.07
ωK_S^0	0.28	0.02	0.1 ± 0.1	0.020	0.005	0.1 ± 0.1
$K^{+}K^{-}K^{0}_{S}$	0.08	0.03	0.05 ± 0.05	0.006	0.005	0.05 ± 0.05
$\pi^0\pi^0K^0_S$	0.71	0.08	_	0.038	0.045	-
ρK_S^0	0.28	0.07	-0.13 ± 0.16	0.020	0.017	-0.13 ± 0.16

$B \rightarrow X_s \gamma$

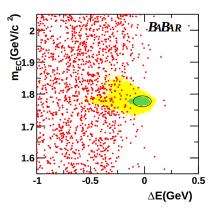
Very important probe of new physics! Current experimental result averaged out: $Br(B \rightarrow X_s \gamma) = (3.52 \pm 0.23 \pm 0.09)10^{-4}$

Theoretical calculations on NNLO:

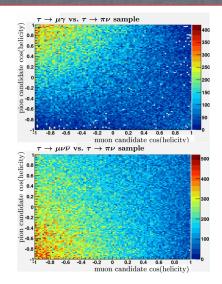

 $Br(B \to X_s \gamma) = (3.15 \pm 0.23)10^{-4}$

Experimently chalenging to measure the inclusive decays. There are two ways of studing this decay:

- 1 Exlusive:
 - The earliest results were done suing a large number of exclusive decays, which are fully reconstructed.
 - Erros rising from unseen modes.
 - Obsolete for SuperB.
- 2 Inclusive:
 - Use tagging to tag the other B.
 - No requirements on X_s.
 - Disadvantage: Cut on photon energy.
 - Effort to keep the cut as small as possible

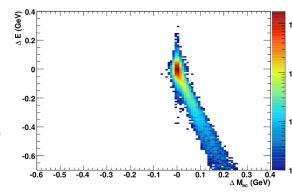


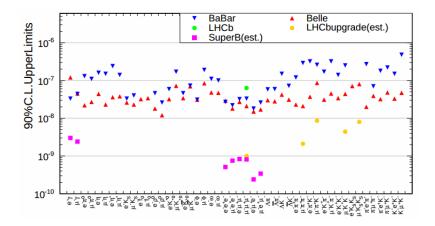
- LFV can occure in SM due to masses of the neutrinos.
- Any observation is evidence of new physics.
- Most promising channels: $\tau \rightarrow I\gamma$, $\tau \rightarrow III$.


$\tau \rightarrow l\gamma$ sensitivity

- Better tracking resolution, increase Δm – ΔE box, by 65%.
- Higher photon efficiency.
- Increase of geometry acceprance.
- Thicker signal peak.
- Smaller boost improves performance of the fit.

Polarization


- 1 SuperB will have polarized electron beam(80%).
- One can use this infromation in serching for NP.
- 3 Preliminary results:
 - Upper limit at 90%: 2.44 imes 10⁻⁹
 - 3σ observation: 5.50 imes 10⁻⁹


 $\tau \rightarrow 3\mu$

Current analysis:

- Calculate the trust axis.
- Semi tag the second τ .
- Limit obtained(90% Br($\tau \rightarrow 3\mu$) = 8.1 \times 10⁻¹⁰

LFV Summary

CP violation

- CP violation was never observed in τ sector.
- SM prediction is neglible small $O(10^{-12})$ in $\tau^{\pm} \rightarrow K^{pm} \pi^0 \nu$.
- Any obserwation is clear identification of NP.
- Very fiew NP models can explain this:
 - 1 RPV SUSY
 - 2 Multi Higgs models
- SuperB can improve sensitivety 75 times compared to CLEO.

EDM can be measured with single angle differential cross section $e^+e^- \to \tau^+\tau^-.$

- Improvement using polarized beam.
- Achivable sensitivety: 10⁻¹⁹ecm