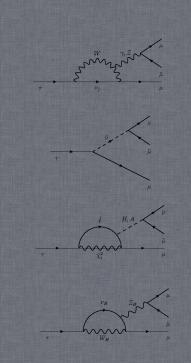
The SuperB factory physics prospects and project status


Marcin Chrząszcz

Institute of Nuclear Physics, Polish Academy of Science, on behalf of the SuperB collaboration

21st September 2012

Introduction

SuperB Infrastructure

B Physics

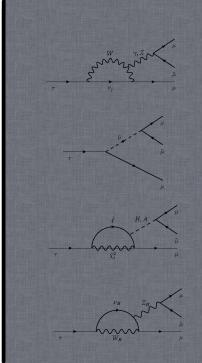
Precision Measurements

TDCP

 $B \rightarrow X_s \gamma$

 $\boldsymbol{B}_{\boldsymbol{s}}$ Decays

Charm Physics


au Physics

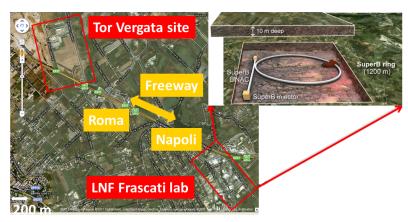
LFV

 $\tau g - 2$

EDM at SuperB

CP Violation

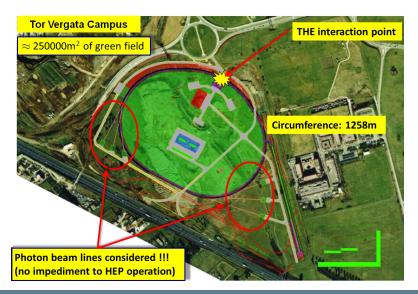
B factories

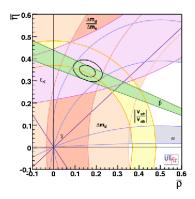

B factories have contributed to many important physics discoveries over the last decade. They will be succeeded by the Super Flavor Factories:

Super Flavor Factories

- 2 Luminosity 10^{36} cm⁻² s⁻¹
- 3 Flexibility to run on charm threshold with luminosity $10^{35} cm^{-2} s^{-1}$
- 4 Longitudinal polarization of electron beam 80%
- Upgraded BaBar detector
- 6 Start of data taking: 2018
- 10ab⁻¹ per year

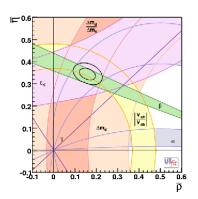
The SuperB factory Introduction 3 / 29


Tor Vergata Site

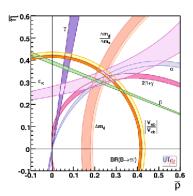

Important dates:

- 1 TDR: Autumn this year.
- 2 Colliding beams: June 2018.

Tor Vergata Site


CKM Matrix

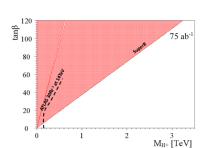
$$\Delta\overline{\eta}=0.016$$


$$\Delta \overline{
ho} = 0.028$$

CKM Matrix

$$\Delta \overline{\eta} = 0.016$$

$$\Delta \overline{\rho} = 0.028$$



$$egin{aligned} \Delta \overline{\eta} &= 0.0024 \ \Delta |V_{cb}|_{incl} &= 0.5\% \; \Delta |V_{cb}|_{excl} = 1.0\% \ \Delta \overline{
ho} &= 0.0028 \ \Delta |V_{ub}|_{incl} &= 1.0\% \; \Delta |V_{ub}|_{excl} = 3.0\% \end{aligned}$$

Precise SM prediction:

$$Br(B o I
u) = rac{G_F^2 \dot{m}_B}{8 \pi} m_I^2 (1 - rac{m_I^2}{m_B^2}) f_B^2 |V_{ub}|^2 au_B$$

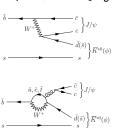
$$m_B^2 r_B^{B} V_{ub} = \frac{1}{8\pi} m_I^2 (1 - \frac{m_I^2}{m_B^2}) r_B^{B} V_{ub} r_B^{B}$$

In SUSY: $Br(B \to l \nu) = \frac{G_F^2 m_B}{8\pi} m_I^2 (1 - \frac{m_I^2}{m_B^2}) r_B^2 |V_{ub}|^2 au_B (1 - \frac{tan^2 eta}{1 + \overline{\epsilon} tan eta} \frac{m_B^2}{m_H^2})$

Time-Dependent CP (TDCP)

Time-dependent CP analysis can show signs of new physics. One has to study a set of modes:

 $b \rightarrow s\overline{s}c$, $b \rightarrow s$


Current experimental results show $\Delta(SM - Observed)$:

 $\Delta sin(2\beta) = 2.7\sigma$, penguin

 $\Delta sin(2\beta) = 2.1\sigma$, tree

Golden modes in SuperB: $B \to J/\psi K^0$, $B \to \eta' K^0$, $B \to f_0 K_s^0$

Mode	Current Precision		Predicted Precision (75 ab ⁻¹)		
	Stat.	Syst.	$\Delta S^f(\text{Th.})$	Stat. Syst.	$\Delta S^f(Th.)$
$J/\psi K_S^0$	0.022	0.010	0 ± 0.01	0.002 0.005	0 ± 0.001
$\eta' K_S^0$	0.08	0.02	0.015 ± 0.015	0.006 0.005	0.015 ± 0.015
$\phi K_S^0 \pi^0$	0.28	0.01	-	0.020 0.010	-
$f_0K_S^0$	0.18	0.04	0 ± 0.02	0.012 0.003	0 ± 0.02
$K_{S}^{0}K_{S}^{0}K_{S}^{0}$	0.19	0.03	0.02 ± 0.01	0.015 0.020	0.02 ± 0.01
ϕK_S^0	0.26	0.03	0.03 ± 0.02	0.020 0.005	0.03 ± 0.02
$\pi^{0}K_{S}^{0}$	0.20	0.03	0.09 ± 0.07	0.015 0.015	0.09 ± 0.07
ωK_S^0	0.28	0.02	0.1 ± 0.1	0.020 0.005	0.1 ± 0.1
$K^{+}K^{-}K_{S}^{0}$	0.08	0.03	0.05 ± 0.05	0.006 0.005	0.05 ± 0.05
$\pi^{0}\pi^{0}K_{S}^{0}$	0.71	0.08	_	0.038 0.045	_
ρK_S^0	0.28	0.07	-0.13 ± 0.16	0.020 0.017	-0.13 ± 0.16

$$B o X_s \gamma$$

Very important probe for new physics! Current experimental average:

$$Br(B \to X_s \gamma) = (3.52 \pm 0.23 \pm 0.09)10^{-4}$$

Theoretical prediction from NNLO:

$$Br(B \to X_s \gamma) = (3.15 \pm 0.23)10^{-4}$$

There are two ways to study this decay:

- 1 Exclusive:
 - The earliest results were obtained using a large number of exclusive decays, which were fully reconstructed
 - · Errors arising from unseen modes
 - Obsolete for SuperB
- 2 Inclusive:
 - Use tagging to tag the other B
 - No requirements on X_s
 - Disadvantage: Cut on photon energy
 - Effort to keep the cut as small as possible

Experimentally challenging to measure inclusive decays.

B_s Decays

 B_s is clearly LHCb domain Short runs at CLEO and Belle showed that $e^+\ e^-$ can also contribute in B_s studies

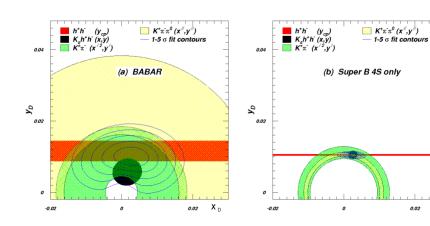
Observable	Error on 1fb ⁻¹	Error on 30fb ⁻¹
$\Delta\Gamma[ps^{-1}]$	0.16	0.03
$eta_{\mathcal{S}}$ from $\mathrm{B_s} o \mathrm{J}/\psi \phi [extit{deg}]$	16	6
$eta_{\mathcal{S}}$ from $\mathrm{B}_{\mathrm{s}} o \mathrm{K} \overline{\mathrm{K}}{}^0$ [deg]	24	11
$\left \frac{V_{td}}{V_{ts}} \right $	0.08	0.017

Potentials in SuperB:

- 1 Decays with neutral particle $B_s \to J/\psi \eta$, $B_s \to K_S^0 \pi$, $B_s \to D^*K_S^0$, $B_s \to \Phi \eta'$
- 2 Measurements of $\mathcal{B}(B \to \gamma \gamma)$. SM prediction $\mathcal{B}(B \to \gamma \gamma) = (2-4) \times 10^{-7}$. NP (SUSY) $\mathcal{B}(B \to \gamma \gamma) = 5 \times 10^{-6}$.
- 3 Measurements of semi-leptonic asymmetry. $A_{SL}^s = \frac{1 \left| \frac{q}{p} \right|^4}{1 + \left| \frac{q}{p} \right|^4} = \frac{N_1 N_2}{N_1 + N_2}$ $N_1 = B_s \to \overline{B}_s \to D_s^{*-}\ell^+\nu \ N_2 = B_s \to \overline{B}_s \to \overline{D}_s^*\ell^-\nu$

Charm Physics

- **1** Plan for running at $\psi(3770)$ threshold
- 2 Scenario: Collect 500fb⁻¹
- O tag possible; other meson can be studied with very small background


Potential improvement from SuperB:

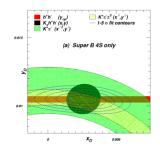
- Improved measurement of the mixing parameters x_D and y_D
- CP violation in $\overline{D} \overline{D}$: $A_{SL} = \frac{N_1 N_2}{N_1 + N_2}$ $N_1 = \Gamma(D^0 \to \ell^- \nu K^+),$

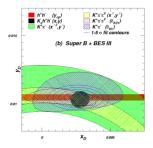
$$N_1 \equiv \Gamma(\underline{D}^0 \to \ell^+ \nu K^-)$$

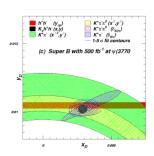
 $N_2 = \Gamma(\overline{D}^0 \to \ell^+ \nu K^-)$

- Search for $D^0 \to \mu\mu$
- Quantum correlations allow one to measure relatively strong phase

Charm Physics

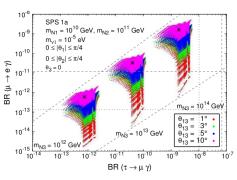


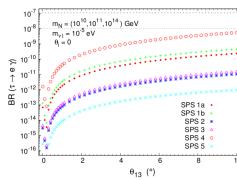



 Y_D

0.02

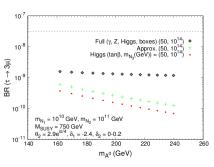
Charm Physics



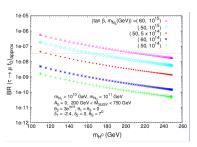

au Physics

- Lepton Flavour Violation
 - SuperB sensitive to some SUSY models
 - Complementary to searches in LHC and MEG
 - Golden channels: $\tau \to 3\ell$, $\tau \to \ell \gamma$, $\tau \to \rho \ell$, $\tau \to \ell \eta$
- **2** τ g **2**
 - MSSM can explain 3×10^{-9} discrepancy
 - Within SuperB sensitivity
- \odot τ EDM and CPV
 - Witin SuperB sensitivity!
 - au EDM constrained by electron EDM upper limit to a range inaccessible for SuperB

CMSSM Model


- N_i right handed neutrinos
- ν_i left handed neutrinos
- ϕ_i complex mixing angle
- ϕ_{13} PNMS matrix.

- LFV up to present limit
- $\tau \to \mu \gamma$ complementary to $\mu \to e \gamma$

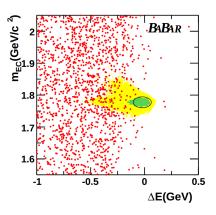

JHEP11(2006)090

NUHM Model

• δ_1 , δ_2 parametrizes the non-universal Higgs masses.

arXiv:0812.2692v1

• Increase sensitivity for $au o f_0(980)\mu, au o \eta\mu$, than to $au o \mu\gamma$

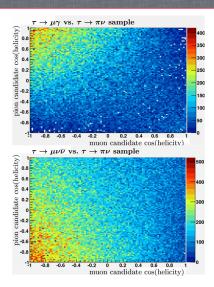

JHEP11(2006)090

SuperB Sensitivity

- 1 Taking BaBar results and improving: $\sqrt{\mathcal{L}_{SuperB}/\mathcal{L}_{BaBar}} \approx 12$
- 2 Signal rises linearly: $\mathcal{L}_{SuperB}/\mathcal{L}_{BaBar}$
- Sensitivity increases with detector resolution
- 4 Babar papers used to extrapolate:
 - Phys.Rev.Lett.104:021802,2010, arXiv:0908.2381v2
 - PhysRevD.81.111101(2010), arXiv:1002.4550v1

$au o \ell \gamma$ Sensitivity

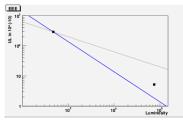
- Better tracking resolution, reduced Δm – ΔE box by 65%
- Higher photon efficiency
- Increase of geometry acceptance
- Thicker signal peak
- Approximate frequentist upper limits, only Poissonian BKG uncertainty
- Smaller boost improves the performance of the fit

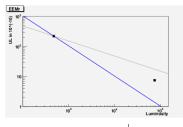


SuperB limits:

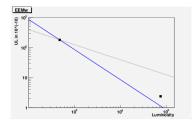
Process	Error on 90% upper limit	3σ observation
$ au o \mu \gamma$		5.4×10^{-9}
$ au o {m e} \gamma$	3.0×10^{-9}	6.8×10^{-9}

Polarization

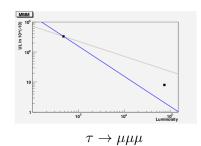

- 1 SuperB will have polarized electron beam (80%)
- One can use this information in NP searches
- 3 TAUOLA SUSY decay model
- 4 Discriminating between NP models!

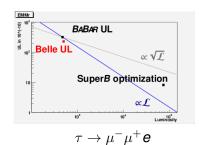

SuperB sensitivity for $au o 3\ell$

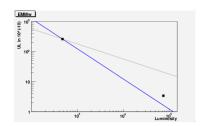
- 1 Taking the BaBar analysis results and improving: $\sqrt{\mathcal{L}_{SuperB}/\mathcal{L}_{BaBar}} \approx 12$
- 2 Signal is rising linearly: $\mathcal{L}_{SuperB}/\mathcal{L}_{BaBar}$
- 3 No detector resolution assumed.
- Approximate frequentist upper limits, only Poissonian BKG uncertainty
- 6 Babar papers used to extrapolate:
 - Phys.Rev.Lett.104:021802,2010, arXiv:0908.2381v2
 - PhysRevD.81.111101(2010), arXiv:1002.4550v1


$au o 3\ell$

$$au o$$
 eee


$$au
ightarrow {m e}^-{m e}^+\mu$$




$$\tau \rightarrow \mathbf{e}^-\mathbf{e}^-\mu$$

The SuperB factory au Physics 19 / 29

$au ightarrow 3\ell$

 $\tau \to \mu^- \mu^- {\it e}$

The SuperB factory au Physics 20 / 29

LFV Summary

Current analysis:

- SuperB will be the cutting edge factory for LFV in τ decays
- Beam polarization will improve the the analysis and make distinguishment among NP models possible

-	•	•
Process	Error on 90% upper limit	3σ observation
$\tau \to \mu \gamma$	2.4×10^{-9}	5.4×10^{-9}
au au au au au	3.0×10^{-9}	6.8×10^{-9}

The SuperB factory au Physics 21 / 29

$$\tau g - 2$$

- MSSM would shift muon g-2 by about the presently observed discrepancy $\Delta a_{tt} \approx 3 \times 10^{-9}$
- SuperB sensitivity estimates: $\sigma(a_{\tau}) = 2.6 \times 10^{-6}$ JHEP098P1108
- SuperB measures $a_{\tau}(q^2)$ from final state distributions of $e^+e^- \to \tau^+\tau^-$ See M.Passera talk
- Luckily NP contributions are constant for small q²

EDM at SuperB

- Experimental status: $|d_e| < 1.6 \times 10^-27$ PhysRevLett.88.071805
- NP expect: $|d_{ au}| \propto (m_{ au}/m_{e})|d_{e}|$
- SuperB upper limit $|d_e| \approx 10^{-22}$ SuperB 2010 Physic Report
- Again we measure $|d_e|(q^2)$
- Luckily NP contributions are constant for small q²

EDM at SuperB

Belle result:

- \bigcirc 29.5 fb^{-1} data sample
- **2** Resolution: $0.9 1.7 \times 10^{-19}$ *ecm*
- 3 J. Bernabeu hep-ex/0210066
- 4 Extrapolation for SuperB (75 ab^{-1}): $\sigma(d_{\tau}) = 17 34 \times 10^{-17}ecm$
- 6 No beam polarization assumed!

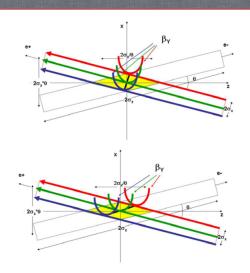
Another approach: arXiv:0707.1658v1

- Assume beam polarity: (80 \pm 1)
- 80% geometry acceptance
- Track reconstruction 97.5%
- $\sigma(d_{\tau}) \approx 10 \times 10^{-17}$ ecm

CP Violation

- CP violation has never been observed in τ sector
- SM prediction is negligibly small $O(10^{-12})$ / in $\tau^{\pm} \to K^{pm} \pi^0 \nu$.
- · Any observation is clear indication of NP
- · Very few NP models can explain this:
 - RPV SUSY
 - 2 Multi Higgs models
- SuperB can improve sensitivity 75 times compared to CLEO $(\xi(\tau \to K_s \pi \nu) = -2.0 \times 10^{-3})$

Thank you for your attention.

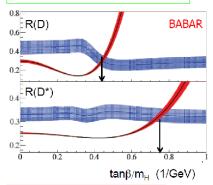

The SuperB factory au Physics 26 / 29

Backup

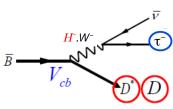
Backup

The SuperB factory au Physics 27 / 29

Quest for Luminosity



$$L \propto \frac{1}{\sqrt{\beta}_{V}}, \, \Phi \approx \frac{\sigma_{Z}}{\sigma_{X}} \frac{\theta}{2}$$


B Rare Decays

$$\mathrm{B}^\pm o \mathrm{D}^{(*)} au^\pm
u$$

Babar ref. arXiv:1205.5442

Hot decay for SuperB!

Observables:

•
$$R(D) = \frac{B \to D\tau\nu}{B \to D\ell\nu}$$

•
$$R(D^*) = \frac{B \to D^* \tau \nu}{B \to D^* \ell \nu}$$

	R(D)	$R(D^*)$
BaBar	0.440 ± 0.071	0.332 ± 0.029
SM	0.297 ± 0.017	0.252 ± 0.003
Difference	2.0σ	2.7σ