Updates on η treatment in $\tau \rightarrow \mu \mu \mu$

Marcin Chrząszcz

Institute of Nuclear Physics, Polish Academy of Science

10 października 2012

Limit studies

Present status Throwing away garbage Problem!

Getting ride of η

 η contamination Dalitz Callibration sample Tricks and tips TMVA for η

Where are we?

- 5×5 bins in PID and GEO.
- 4 × 4 have meaning according to binning optimisation.
- "Trash bins" are rejected in the binning optimisation procedure.
- "Trash bins" have unroftunatelly SM background.

To be, or not to be: that is the question.

Do we really need the trash bin and what is the impact on the limit?

Throwing away garbage

To fully evaluate the impact of trash bins on the limit:

- Kick off all trash bins.
- New α from Paul
- Calculate the limit again(with the same script!) with and without garbage.

Results:

- Expected limit with garbage: 8.18×10^{-8} .
- Expected limit w/o garbage: 8.21×10^{-8} .

Conclusion

Let's once and for always take out the garbage.

Problem

Unfortunatelly even tho the expected limit doesn't change:

η contamination

In the note you can find the updated table with eta contibution in each bin.

The only change was that I changed R form R = 0.1748 to R = 0.1798. The dicrepancy remains between me and Marta.

PID	GEO	Marta	Me
-1.1, -0.25	-1.1,0.05	36.63	58.4975
-1.1, -0.25	0.05, 0.35	21.38	27.776
-1.1, -0.25	0.35, 0.55	18.58	21.8781
-1.1, -0.25	0.55, 0.75	14.05.	14.0586
-1.1, -0.25	0.75, 1.00001	0	0
-0.25, -0.125	-1.1,0.05	35.24	35.557
-0.25, -0.125	0.05, 0.35	32.92	33.1856
-0.25, -0.125	0.35, 0.55	44.97	45.4749
-0.25, -0.125	0.55, 0.75	11.77	11.7761
-0.25, -0.125	0.75, 1.00001	2.12	2.11926
-0.125, -0.025	-1.1, 0.05	60.09	60.3985
-0.125, -0.025	0.05, 0.35	83.36	85.07
-0.125, -0.025	0.35, 0.55	75.04	75.0836
-0.125, -0.025	0.55, 0.75	35.01	35.2021
-0.125, -0.025	0.75, 1.00001	5.61	5.61795
-0.025, 0.05	-1.1, 0.05	35.39	35.7631
-0.025, 0.05	0.05, 0.35	58.80	59.245
-0.025, 0.05	0.35, 0.55	45.13	45.155

PID	GEO	Marta	Me
-0.025, 0.05	0.55, 0.75	44.68	44.9531
-0.025, 0.05	0.75, 1.00001	3.98	3.98138
0.05, 1	-1.1, 0.05	10.65	10.6573
0.05, 1	0.05, 0.35	15.58	15.5424
0.05, 1	0.35, 0.55	14.88	14.888
0.05, 1	0.55, 0.75	13.48	13.5751
0.05, 1	0.75, 1.00001	0.805	0.80517

Comments:

- Marta's "low" bins have always less events. "High" bins are ok.
- Mayby one file is missing?
- My script(plug and play): CLIC.
- I think in the end this will not matter(next slides).

EVERYWHARE I APPLIED STANDARD VETOS AND CUTS

Let's look into Dalitz plots of η and signal MC.

 $D_s \rightarrow \eta \mu \nu$ $\tau \rightarrow \mu \mu \mu$ Looks like this can be used. But here comes a problem: How to evaluate the cut?

Updates on η treatment in $\tau \to \mu \mu \mu$

Getting ride of η

Data after stripping

 $\tau \to \mu \mu \mu$

Stripping data.

M.Chrząszcz 2012

"Learn from yesterday, live for today, hope for tomorrow", A.Einstein

The Dalitz may be different in different mass windows:

 $\tau \rightarrow \mu\mu\mu$ Stripping data in signal window. Looks promising. But this is sample that has "potentially" signal. Where to get a callibration sample?

M.Chrzaszcz 2012

Callibration sample

We have unsued space =)

Updates on η treatment in $\tau \to \mu \mu \mu$

Callibration sample

Study to determiny how big can we have the callibration sample:

- Changing the size purple of the purple mass windws.
- Fit (simple exponent this time) and calculate the new PDF.
- Calculate the limit expected limit(no systematics).

Results:

Changin the windwo from ± 15 to ± 50 changes makes the limit fluctuate by: ± 0.05 .

Conclusion: We can use this data =)

Callibration sample vs signal window

Mass:
$$(M_{\tau} - 40, M_{\tau} - 20)$$

Mass: $(M_{\tau} + 20, M_{\tau} + 40)$

To be compared with: Looks good =)

Updates on η treatment in $\tau \to \mu \mu \mu$

Getting ride of η

M.Chrząszcz 2012

12/16

Tricks and tips

Are we really interested in removing η in all bins? As a rule of thumb I choosed the bins in which we have expected η more than 10% of all events. You will end up with bins:

Updates on η treatment in $au o \mu \mu \mu$

Getting ride of η

13 / 16

M.Chrzaszcz 2012

TMVAing

Using data in high bins train MLP:

Updates on η treatment in $\tau \to \mu \mu \mu$

Getting ride of η

M.Chrzaszcz 2012

TMVAing

 D_s Looks promissing =)

M.Chrząszcz 2012

Updates on η treatment in $au o \mu \mu \mu$

Getting ride of

15/16

 τ

A good cut is found to be: 0.92. Removes 90% of η ToDo:

- calculate eff from callibration sample
- calculate α and new limit
- pray that it will be better