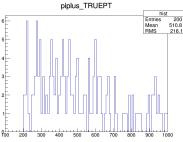
The need for speed in Semileptonic MC generation

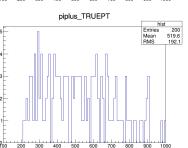
Marcin Chrząszcz mchrzasz@cern.ch

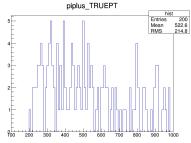
 $R(\Lambda_c^*)$ meeting, CERN September 12, 2015

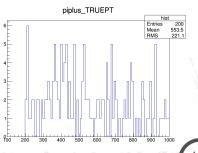
The problem

- The MC generation is quite inefficient ⇒ we generate a lot of events that are lost in the stripping and reconstruction.
- The dominate systematic in the $R(D^*)$ was the MC statistics.
- Every saved event will buy us something.
- Ideas:
 - \circ Take really the inclusive states of τ and Λ_c .
 - Put generator cuts.

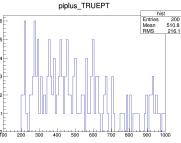

Generator cuts

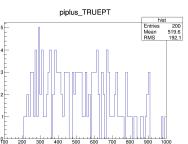

- ⇒ We do not need events that have no chance passing our stripping selection.
- ⇒ We can put reject events based in the generator level on particles that enter in the stripping line: ex.

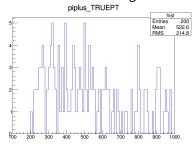

```
[ Lambda_b0 -> ( Lambda_c(2595)+ -> (Lambda_c+ ->\hat{p}+ K-\hat{p}i+ ) pi+ pi- ) (tau- -> \hat{m}u- nu_tau nu_mu ) nu_tau ]CC \Rightarrow Only particles with \hat{} have the following requirements and are required to be in LHCb acceptance.
```

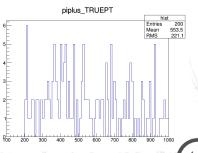

Particle	Generator		Stripping	
$Hadrons(p,\pi,K)$	p_T	$> 200 \mathrm{MeV}$	p_T	$> 300 \mathrm{MeV}$
$Hadrons(p,\pi,K)$	p	$> 1800 \mathrm{MeV}$	p	$> 2000 \mathrm{MeV}$
Muons	p_T	$> 600 \mathrm{MeV}$	p_T	$> 800 \mathrm{MeV}$
Muons	p	$> 2800 \mathrm{MeV}$	p	$> 3000 \mathrm{MeV}$

 \Rightarrow Generated 200 events in the MC level and see if the things are ok.

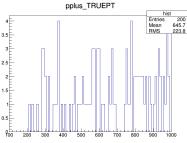


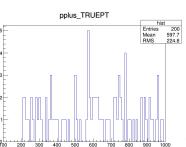


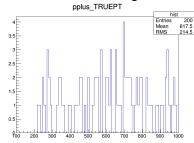


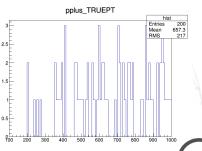


 \Rightarrow Generated 200 events in the MC level and see if the things are ok.

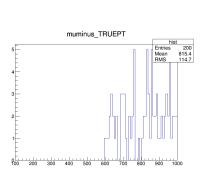


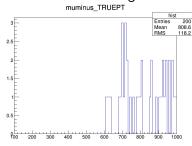


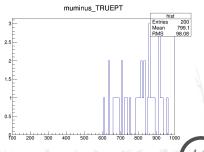




 \Rrightarrow Generated 200 events in the MC level and see if the things are ok.







 \Rrightarrow Generated 200 events in the MC level and see if the things are ok.

Comment: When I simulate the 3π τ decay there is no μ .

Conclusions

I think we squized everything there is from the simulation ;)

Backup

