Updates on activities.

Marcin Chrząszcz^{1,2}, Nicola Serra¹

¹ University of Zurich , ² Institute of Nuclear Physics, Krakow,

16th July 2013

Inflaton analysis

Reminder Generator Checks Let's look into data K_s FD Further steps

Bose-Einstein Correlations

 Λ_c decays

Reminder

We observed strange FD distributions in MC: Reconstructed FD Reconstructed life time

Work done so far

Cross check:

- Let's simulate decay using generator level.
- Same seeds, configuration, etc.

First look into data

Blinded: [5200, 5350]

What do we have in the Inflaton mass; UPSTREAM

M.Chrząszcz, N.Serra 2013

Update on analysis

Inflaton analysis

6/26

 $K_{\rm S}$

 J/Ψ

KS0_MM {KS0_MM>2900&&KS0_MM<3200}

 $\Psi(2S)$

KS0_MM {KS0_MM>3500&&KS0_MM<3800}

Update on analysis

Inflaton analysis

What do we have in the Inflaton mass; DOWNSTREAM

Update on analysis

Inflaton analysis

0 / 06

 K_{s}

KS0_MM {KS0_MM>410&&KS0_MM<490}

M.Chrząszcz, N.Serra 2013

Update on analysis

Inflaton analysis

 K_s **FD**

Let's make our inflaton more K_s like.

No bumps. Are we unlucky?

Update on analysis

Inflaton analysis

M.Chrząszcz, N.Serra 2013

3 / 26

Futher steps

- Try making selection.
- Will split the sample to up and downstream.
- Think about the normalization channel. Big problems!

Bose-Einstein Correlation

- We had a talk on soft QCD from prof. Bialas.
- BEC looks more and more interesting.
- Indirect test of statistical model.
- The plan:
 - 1 Measure 2 body correlations.
 - 2 Measure 3 body correlations. FIRST TIME MEASUREMENT!
- FDC looks bad. Not clear theoretical predictions.
- Will focus on K, π .

Work done since last meeting

- BEC predicts and enhancement of pars in low Q region.
- To interpret you need Longitudinal Central Mass System (LCMS).
- Needs a specific axis. After some discussion we decided to have two samples:Z-axis, and jet axis.
- LCMS was implemented.

Work done since last meeting

General Problem(since I didn't find it in literature):

We have a four vector $Q_u = q_{1u} + q_{2u}$ and it's momentum competent \overrightarrow{p} . We have an arbitrary versor in space: \overrightarrow{v} . Question what's the boost vector $\overrightarrow{\beta}$? Solution: $\beta_i = v_i \frac{q_i}{q_0}$

First look at BEC in LCMS

M.Chrząszcz, N.Serra 2013

17 / 26

Motivation for Λ_c

Following the $\tau \rightarrow 3\mu$ and $\tau \rightarrow p\mu\mu$ (published 2 weeks ago) we decided to go one step further and analyse analogous channels for Λ_c .

Decays have different physics motivations:

$$\begin{array}{c|c} \tau \to 3\mu \ \mathsf{LFV} \\ \tau^+ \to p\mu^-\mu^+ \ |B-L| = 0 \\ \tau^+ \to \bar{p}\mu^+\mu^+ \ |B-L| = 0 \end{array} & \begin{array}{c} \Lambda_c \to 3\mu \ |B-L| = 0 \\ \Lambda_c^+ \to p\mu^-\mu^+ \ \mathsf{FCNC} \\ \Lambda_c^+ \to \bar{p}\mu^+\mu^+ \ |B-L| = 0 \end{array} \\ \end{array}$$

• The current limits (@ 90% CL):

$$egin{split} \mathcal{B}(\Lambda_c^+ o p \mu^- \mu^+) < 4.4 imes 10^{-5}, \ \mathcal{B}(\Lambda_c^+ o ar{p} \mu^+ \mu^+) < 9.4 imes 10^{-6} \ \mathcal{B}(\Lambda_c^+ o 3\mu) ext{ No constraints!} \end{split}$$

M.Chrzaszcz 2013

First look at new MC

A RooPlot of "Lambda_cplus_MM"

mean = 2287.46*Mev* $\sigma_1 = 17.5$ *Mev*, $\sigma_2 = 6.5$ *MeV*

Plans for next week

- Continue background production for τ and Λ_c
- Have a look at isolation paramenter for Lc and tau.
- Produce all ntuples for Lc.
- Implement jet algorithm for BEC.

BACKUP

Strategy

Follow the strategy of τ analysis:

- Take prompt Λ_c , separate approach to SL.
- Loose cut preselection.
- Train MVA on MC prompt signal and recalibrate on data.
- Mass resolution we expect similar to τ. 15MeV for 3μ and 9MeV for pμμ. Mean recalibrated from data.
- Normalize to $\Lambda_c^+ \to p K^- \pi^+$, or $\Lambda_c^+ \to p \pi^- \pi^+$.
- Optimise the binning in MVA.
- CLs method for limit.

Comparison Λ_c vs τ

Strong sides of Λ_c :

- No SM background in 3μ case ($D_s \rightarrow \eta(\mu\mu\gamma)\mu\nu$)
- Smaller combinatorial background than in au decays. igodot

Weaker sides of Λ_c :

- Smaller no. of Λ_c than τ to begin with.
- Need to study very carefully ∧_c production and backgrounds. ⊗

Work done so far

- $\Lambda_c \rightarrow p \mu \mu$ is already stripped(line was with τ line all along).
- $\Lambda_c \rightarrow 3\mu$ is being stripped in incremental stripping.
- Requested 1M signal samples. Production will today most likely.
- Background studies.

Possible background

Resonance	$\mathcal{B}(\lambda_{m{c}} o m{ ho} X)$	$\mathcal{B}(X o \mu \mu)$
η	UNKNOWN	$(5.8\pm0.6) imes10^{-6}$
$ ho^{0}$	UNKNOWN	$(4.55\pm0.28) imes10^{-5}$
ω	UNKNOWN	$(9.1\pm 3.0) imes 10^{-5}$
f(980)	$(2.8 \pm 1.9) imes 10^{-3}$	UNKNOWN
ϕ	$(8.2 \pm 2.7) imes 10^{-4}$	$(2.89\pm0.19) imes10^{-4}$
Resonance	$\mathcal{B}(\lambda_{m{c}} o m{ ho} X)$	$\mathcal{B}(X o \mu \mu \gamma)$
η	UNKNOWN	$(3.1\pm 0.4) imes 10^{-4}$

M.Chrząszcz 2013

Λ_c production mechanism

Process	$\mathcal{B}(X o \lambda_{c} Y)$
$\Lambda_B ightarrow \Lambda_c^+ \pi^-$	0.0088 ± 0.0032
$\Lambda_B \to \Lambda_c^+ \ell \nu$	0.05 ± 0.014
$\Lambda_B \to \Lambda_c^+ \ell \nu \pi \pi$	0.056 ± 0.031
$B ightarrow \Lambda_c^+ \mathrm{p} \pi \pi^0$	$(1.8\pm0.6) imes10^{-3}$
$B ightarrow \Lambda_c^+ p \pi \pi \pi$	$(2.3\pm0.7) imes10^{-3}$
$B ightarrow \Lambda_c^+ \Lambda_c^- K^+$	$(8.7\pm3.5) imes10^{-4}$
$B ightarrow\Sigma(2455)\mathrm{p}\pi^{0}$	$(4.4 \pm 1.8) imes 10^{-4}$
$B \rightarrow \Sigma(2455) p\pi\pi$	$(4.4 \pm 1.7) imes 10^{-4}$
$B \rightarrow \Sigma (2455)^{} p \pi \pi$	$(2.8 \pm 1.2) imes 10^{-4}$

M.Chrząszcz 2013