Recent BaBar results on CP violation in B-meson decays

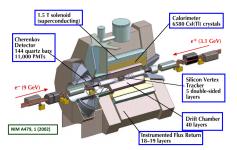
$\begin{array}{l} \mbox{Marcin Chrząszcz}^1 \\ \mbox{on behalf of the BaBar collaboration} \end{array}$

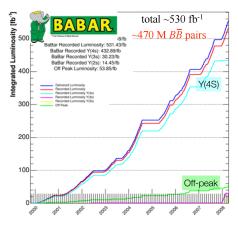
¹ University of Zurich

Deep-Inelastic Scattering 2015

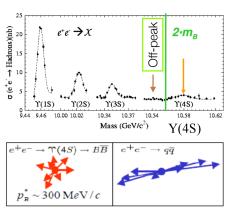
DIS 2015 XXIII International Workshop on Deep-Inelastic Scattering and Related Subjects

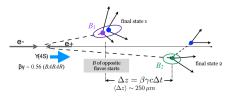
> Dallas, Texas April 27 – May 1, 2015


30 April, 2015


- 1. BaBar detector
- 2. CP asymmetries with inclusive dilepton measurement.
- 3. CP asymmetries in FCNC:
 - ▶ $b \rightarrow s\gamma$ ▶ $b \rightarrow s\ell\ell$
- 4. Conclusions

BaBar Detector


- PEP-II, an asymmetric e⁻e⁺ collider.
- ► Operating mostly at Ŷ(4S) threshold.



B factories

- B mesons produced in a clean environment.
- Just above the $m(B\overline{B})$ threshold.
- Thanks to knowing the beam energy we have additional discriminating variable:

$$\Delta E = E_{\rm B} - E_{beam}$$

B⁰B⁰ mixing

- Neutral mesons couple to their anti particles via weak interactions.
- $\blacktriangleright \ B^0 \Leftrightarrow \overline{B}{}^0, \ B^0_s \Leftrightarrow \overline{B}{}^0_s, \ D^0 \Leftrightarrow \overline{D}{}^0, \ K \Leftrightarrow \overline{K}{}^0.$
- We can writhe the weak eigenstates as:

$$|B_{L/H}
angle = rac{1}{\sqrt{p^2+q^2}}(p\,|\mathsf{B}^0
angle \pm q\,|\overline{\mathsf{B}}{}^0
angle)$$

► Then the CP asymmetry can can be written as: $A_{CP} = \frac{\mathcal{P}(\overline{B}^0 \to B^0) - \mathcal{P}(B^0 \to \overline{B}^0)}{\mathcal{P}(\overline{B}^0 \to B^0) + \mathcal{P}(B^0 \to \overline{B}^0)} \approx 2(1 - |\frac{q}{p}|)$

•
$$\Upsilon(4S)$$
 has an anti-symmetric state:
 $\frac{1}{\sqrt{2}}(B^0(t_1)\overline{B}^0(t_2) - \overline{B}^0(t_1)B^0(t_2))$

One B is a specific flavour state tags the other one.

Inclusive dilepton measurement

- \blacktriangleright B mesons decay in $\sim 10\%$ semileptonically.
- Charge of lepton determines the B meson flavour.
- If one observes same sign leptons \rightarrow mixing occurred $(\ell\ell \in \{ee, \mu\mu\})$

• Writing down the mixing probabilities (time integrated): ${\cal P}^{\pm\pm} \propto (1\pm {\cal A}_{CP})\chi_d$

$$\mathcal{P}^{\pm\mp} \propto (1-\chi_d),$$

where A_{CP} is the CP asymmetry and χ_d is the effective mixing probability.

• SM:
$$A_{CP} \sim \mathcal{O}(10^{-4})$$
, NP can enhance significantly A_{CP}

Marcin Chrząszcz (UZH)

Detector effects

- ▶ Detector is not a perfect device \rightarrow Introduced charge asymmetries a_{ℓ_j} for each ℓ_i .
- $\Upsilon(4S)$ also goes to B⁺B⁻. Contribution: $r_B = N_{B^+B^-}/N_{B^0\overline{B}^0}$.
- Time integrated probability gets modified:

$$\mathcal{P}^{\pm\pm} \propto (1 \pm a_{\ell_1} \pm a_{\ell_2} \pm A_{CP})\chi_d$$
$$\mathcal{P}^{\pm\mp} \propto (1 - \chi_d + r_B)(1 \pm a_{\ell_1} \mp a_{\ell_2})$$

▶ Summing over all events in $\ell_1 \ell_2 \in \{ee, e\mu, \mu e, \mu \mu\}$ categories:

$$\begin{split} N_{\ell_1\ell_2}^{\pm\pm} &= 1/2N_{\ell_1\ell_2}^0(1\pm a_{\ell_1}\pm a_{\ell_2}\pm A_{CP})\chi_d^{\ell_1\ell_2}\\ N_{\ell_1\ell_2}^{\pm\mp} &= 1/2N_{\ell_1\ell_2}^0(1-\chi_d^{\ell_1\ell_2}+r_B)(1\pm a_{\ell_1}\mp a_{\ell_2}) \end{split}$$

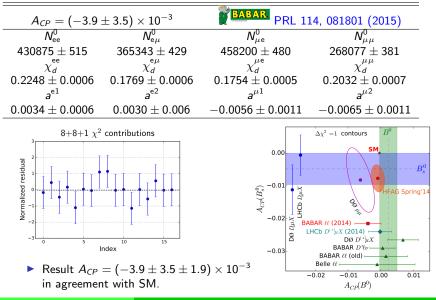
- We have 16 observables, and 13 unknowns. a_{ℓ_i} highly correlated.
- Adding additional observable: events containing only single electron (a_e) .
- 17 observables as input to χ² fit, extracting: A_{CP}, 4 signal yields University of 4 efficiency asymmetries, 4 mixing probabilities.

Marcin Chrząszcz (UZH)

Recent BaBar results on CP violation in B-meson decays

Event selection

- Item select an isotropic events with ≥ 4 tracks.
- Each lepton track should have p > 0.6 GeV/c.
- Hard requirements on the e, μ PID selection.
 - $\epsilon_e \sim 93\%$, $\epsilon_\mu 40 80\%$.
 - MissID: $\mathcal{P}(h \rightarrow e) < 0.1\%$, $\mathcal{P}(h \rightarrow \mu) \sim 1\%$.
- Veto J/ψ , $\psi(2S)$ and photon conversion.
- \blacktriangleright Δt is calculated from the separation of the two POCA 1 POCAs along the beam POCA 2 direction and the c.m. / s1 Beam Spot 2 х boost ($\beta \gamma = 0.56$). True B 1 vertex True B 2 vertex - -0-S Y(4s) • $\Delta t < 15 \text{ ps and}$ $\sigma \Delta t < 3 \text{ ps}$


lepton 1

lepton 2

Source	(10^{-3})
Generic MC bias correction	1.04
MC branching fractions	0.43
Fake lepton corrections in dilepton	0.77
Fake e correction in single electron	0.65
Neutral/charged B difference	0.74
Direct-/cascade e asymmetry difference	0.44
Direct-/cascade μ asymmetry difference	0.34
Background-to-signal ratios	0.68
Random forest cut efficiency	0.08
Total	1.90
adda.	

- Dominant systematic from bias in MC.
- Secondly the MC/data corrections to PID.
- Difference in charge asymmetry between B⁰ and average of B⁰ and B[±].

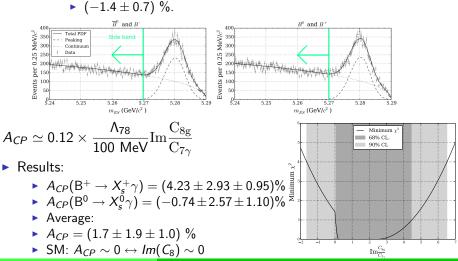
Marcin Chrząszcz (UZH)

Flavour-changing neutral current

- CKM structure in SM allows only the charged interactions to change flavour.
- \blacktriangleright One can escape the CKM structure and produce b \rightarrow s and b \rightarrow d only at loop level.
 - \blacktriangleright This kind of process are suppressed by the GIM in SM \rightarrow Rare decays.
- ▶ LHCb already sees a 3.7 σ deviation in the angular observables in B⁰ → K^{*} $\mu^{-}\mu^{+}$. See my talk: LINK.
- ▶ Here we present CP observables in b \rightarrow s γ and b \rightarrow s $\ell\ell$ decays.
- SM prediction \sim 0

CP asymmetries in $\mathbf{B} \to X_s \boldsymbol{\gamma}$

- Fully inclusive approach impossible.
- Instead use semi-inclusive (sum of exclusive modes).
- 16 modes used (marked with *)
- Additional requirements:


▶ PRD 90, 092001	(2014)
------------------	--------

- Requirements:
 - $m(X_s) \in (0.6, 2.0) \text{ GeV}$
 - Indirect cut on $E_{\gamma} > 2.3 \text{ GeV}$
 - $|\Delta E| < 0.15 \text{ GeV}$
 - MVA based approach to get ride of qq background.

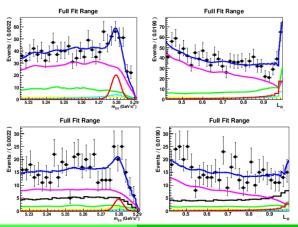
-				
		Final State		Final State
	1*	$B^+ \rightarrow K_S \pi^+ \gamma$	20	$B^0 \rightarrow K_S \pi^+ \pi^- \pi^+ \pi^- \gamma$
	2*	$B^+ \rightarrow K^+ \pi^0 \gamma$	21	$B^0 \rightarrow K^+ \pi^+ \pi^- \pi^- \pi^0 \gamma$
	3*	$B^0 \rightarrow K^+ \pi^- \gamma$	22	$B^0 \rightarrow K_S \pi^+ \pi^- \pi^0 \pi^0 \gamma$
	4	$B^0 \rightarrow K_S \pi^0 \gamma$	23*	$B^+ \rightarrow K^+ \eta \gamma$
	5*	$B^+ \rightarrow K^+ \pi^+ \pi^- \gamma$	24	$B^0 \to K_S \eta \gamma$
	6*	$B^+ \rightarrow K_S \pi^+ \pi^0 \gamma$	25	$B^+ \rightarrow K_S \eta \pi^+ \gamma$
	7*	$B^+ \rightarrow K^+ \pi^0 \pi^0 \gamma$	26	$B^+ \rightarrow K^+ \eta \pi^0 \gamma$
	8	$B^0 \rightarrow K_S \pi^+ \pi^- \gamma$	27*	$B^0 \to K^+ \eta \pi^- \gamma$
	9*	$B^0 \rightarrow K^+ \pi^- \pi^0 \gamma$	28	$B^0 \rightarrow K_S \eta \pi^0 \gamma$
	10	$B^0 \rightarrow K_S \pi^0 \pi^0 \gamma$	29	$B^+ \rightarrow K^+ \eta \pi^+ \pi^- \gamma$
	11*	$B^+ \rightarrow K_S \pi^+ \pi^- \pi^+ \gamma$	30	$B^+ \to K_S \eta \pi^+ \pi^0 \gamma$
0	12*	$B^+ \rightarrow K^+ \pi^+ \pi^- \pi^0 \gamma$	31	$B^0 \rightarrow K_S \eta \pi^+ \pi^- \gamma$
	13*	$B^+ \rightarrow K_S \pi^+ \pi^0 \pi^0 \gamma$	32	$B^0 \rightarrow K^+ \eta \pi^- \pi^0 \gamma$
	14*	$B^0 \rightarrow K^+ \pi^+ \pi^- \pi^- \gamma$	33*	$B^+ \rightarrow K^+ K^- K^+ \gamma$
	15	$B^0 \rightarrow K_S \pi^0 \pi^+ \pi^- \gamma$	34	$B^0 \rightarrow K^+ K^- K_S \gamma$
	16*	$B^0 \rightarrow K^+ \pi^- \pi^0 \pi^0 \gamma$	35	$B^+ \rightarrow K^+ K^- K_S \pi^+ \gamma$
	17	$B^+ \rightarrow K^+ \pi^+ \pi^- \pi^+ \pi^- \gamma$	36	$B^+ \rightarrow K^+ K^- K^+ \pi^0 \gamma$
	18	$B^+ \rightarrow K_S \pi^+ \pi^- \pi^+ \pi^0 \gamma$	37*	$B^0 \rightarrow K^+ K^- K^+ \pi^- \gamma$
	19	$B^+ \rightarrow K^+ \pi^+ \pi^- \pi^0 \pi^0 \gamma$	38	$B^0 \rightarrow K^+ K^- K_S \pi^0 \gamma$

Asymmetry extraction

- Asymmetry for fitted yields needs to be corrected as in previous analysis detector asymmetries.
- Asymmetry extracted from side-bands.

Marcin Chrząszcz (UZH)

CP asymmetries in $\mathbf{B} \to X_s \ell \ell$


- Very important channel for NP searches.
- Significant deviation found by LHCb.
- CP observables are very clean predictions in SM and almost QCD free.
- Similar "semi-inclusive" modes:

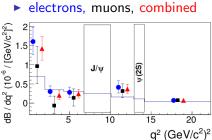
$$\begin{split} & X_{s} = \{\mathsf{K}^{+}, \; \mathsf{K}^{+}\pi^{0}, \; \mathsf{K}^{+}\pi^{-}, \; \mathsf{K}^{+}\pi^{-}\pi^{0}, \\ & \mathsf{K}^{+}\pi^{-}\pi^{+}, \; \mathsf{K}_{s}, \; \mathsf{K}_{s}\pi^{+}, \; \mathsf{K}_{s}\pi^{+}\pi^{0}, \; \mathsf{K}_{s}\pi^{+}\pi^{-}\} \end{split}$$

- Look for two leptons flavours: $\ell \ell = \{ee, \mu \mu\}$
- Additional requirements:
 - ▶ Require: m(X_s) < 1.8 GeV</p>
 - $\Delta E \in [-0.1(-0.05), 0.05]$ GeV for $\ell \ell =$ ee $(\mu \mu)$

Differential branching fraction

- PRL 112 (2014) 211802
- ▶ J/ ψ , (ψ (2*S*)) veto: 6.8 10.1 (12.9 14.2) GeV
- Suppress qq background with a BDT.
- Perform a simultaneous fit to m_{ES} and $L_R = \frac{P_S}{P_S + P_R}$

Marcin Chrząszcz (UZH)


Recent BaBar results on CP violation in B-meson decays

15 / 17

CP & BR asymmetries results

q^2 [GeV ²]	A _{CP}	
$1.0 < q^2 < 6.0$	$-0.06 \pm 0.22 \pm 0.01$	
$0.1 < q^2 < 2.0$	$-0.13 \pm 0.18 \pm 0.01$	[GeV/c ²] ²)
$2.0 < q^2 < 4.3$	$0.42 {}^{+0.50}_{-0.42} \pm 0.01$	eV/e
$4.3 < q^2 < 6.8$	$-0.45^{+0.44}_{-0.57}\pm0.01$	<u>[</u>]
$10.1 < q^2 < 14.2^*$	$0.19 {}^{+0.18}_{-0.17} \pm 0.01$	10 ⁻⁶

• Measured branching fractions(×10⁻⁶) : $\mathcal{B}(B \to X_s e^- e^+) = 7.69^{+0.32}_{-0.77} \pm 0.50^{+0.33}_{-0.33} \pm 0.50^{-0.33}_{-0.77} \pm 0.50^{-0.33}_{-0.33} \pm 0.50^{-0.33}_{-0.77}$

¥

10

15

 q^{20} (GeV²/c⁴)

$$\mathcal{B}(B \to X_s e^- e^+) = 4.41^{+1.31}_{-1.17}{}^{+0.57}_{-0.42} \pm 0.27$$

- Combined: $\mathcal{B}(B \to X_s \ell^- \ell^+) = 6.73^{+0.70}_{-0.64} \pm 0.50$
- In agreement with SM.
- * Excluding $\psi(2S)$ region.

Marcin Chrząszcz (UZH)

Recent BaBar results on CP violation in B-meson decays

 A_{CP}

0.5

Conclusions

- 1. B-factories still producing new results.
- 2. Presented new measurements of CP violation in neutral B meson system using inclusive dileptons events.
- 3. BaBar continues to chase FCNC with measurement of CP asymmetries in: b \rightarrow s γ and b \rightarrow s $\ell\ell$
- 4. FCNC statistically limited: need future experiments.
- 5. All measurements consistent (for now?) with SM.

Marcin Chrząszcz (UZH)

17 / 17