FlavBit update

Florian Bernlochner Jihyun Bhom Marcin Chrzaszcz Nazila Mahmoudi Pat Scott

Imperial College London

CERN

Gambit collaboration meeting, June 6, 2019

FlavBit: the past

- \Rightarrow Theory predictions calculated via SuperIso v2.3.
- \Rightarrow Theoretical errors hard-coded and scaled if needed.

- \Rightarrow Experimental results are stored in YAML files and read by Flav reader.
- \Rightarrow The class also store theoretical errors.
- \Rightarrow Errors were symmetrized and other nasty assumptions were made.

Future

Each of the elements of the code is there and we just need to put them together inside Gambit.

FlavBit: present and future

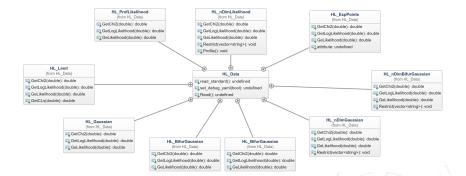
 \Rightarrow Theory predictions calculated via SuperIso v3+.

⇒ Program can calculate theoretical errors for each scanning point. ⇒ Experimental results are stored in YAML files and read by external program called HEPLike.
 ⇒ Very nice features included.

HEPLike

 \Rightarrow High Energy Physics Likelihood (HEPLike).

- Open source software.
- With separate database of measurements.
- Statistics library.
- Can be interfaced with existing codes.
- \Rightarrow It constructs the experimental likelihoods for you!
- \Rightarrow Does work with both the χ^2 and (log-)likelihood fits.
- \Rightarrow Useful utilities for creating citations and database search.


HEPLike

- \Rightarrow The are couple of measurement types:
- Upper limits,
- Single measurement with symmetric uncertainty,
- Single measurement with asymmetric uncertainty,
- Multiple measurements with symmetric uncertainty,
- Multiple measurements with asymmetric uncertainty,
- One dimensional likelihood function,
- n-dimensional likelihood function.

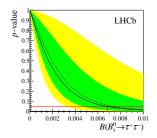
Bonus

In addition we provide a way for the future that the experiments can publish the dataset.

HEPLike - code structure

/ 17

Measurement encoding, H1_Data


```
\Rightarrow Measurements are stored in YAML file:
```

```
BibCite: Aaij:2017vbb
BibEntry: '@article{Aaij:2017vbb,
                                                                2
      author
                       = "Aaij, R. and others",
                                                                3
                       = "{Test of lepton universality
      title
                                                                4
                            with B^{0} \setminus rightarrow
                                                                5
                          K^{\ast}_{\ast} = 11^{+} \le 11^{-}  decays
                                                                ,6
                       = "LHCb".
      collaboration
                                                              19
                                                              20
DOI: 10.1007/JHEP08(2017)055
                                                              21
 Process: R_{Kstar^{*}}
                                                              22
FileName: RKstar.yaml
                                                              23
Name: BKstar
                                                              24
Source: HEPDATA
                                                              25
SubmissionYear: 2017
                                                              26
 PublicationYear: 2018
                                                              27
Arxiv: 1705.05802
                                                              28
Collaborations: LHCb
                                                              29
 Kinematics: q_2 > 1.1 && q_2 < 6.
                                                              30
HLAuthor: Gal Anonim
                                                              31
HLEmail: gal.anonim@ifj.edu.pl
                                                              32
HLType: HL_ProfLikelihood
                                                              33
```

/ 17

Upper limits, HL_Limit

\Rightarrow Example of published p-value scans:

⇒ Information coded as: Cls: - [0.0, 1.0] - [1.0e-10, 0.977091694706] - [2.0e-10, 0.954375824297] - [3.0e-10, 0.93200355343] - [4.0e-10, 0.910630700546] - [5.0e-10, 0.889382721809]

Marcin Chrzaszcz (CERN)

FlavBit update

/ 17

Upper limits, HL_Limit

$$pdf(x) = \frac{1}{2^{1/2}\Gamma(1/2)} x^{1/2-1} e^{-x/2},$$
(1)

which had the cumulative distribution function defined as:

$$cdf(x) = \frac{1}{\Gamma(1/2)}\gamma(1/2, x/2).$$
 (2)

In the above equations the $\Gamma(x)$ and $\gamma(k,x)$ correspond to Gamma and incomplete gamma functions. By revering the cdf(x) one can obtain the χ^2 value:

$$\chi^2 = cdf^{-1}(1-p),$$
(3)

(4)

and if needed the log-likelihood:

$$-\log(\mathcal{L}) = \frac{1}{2}\chi^2,$$

FlavBit update

Single measurement, symmetric error, HL_Gaussian

 \Rightarrow Well this is as simple as:

 \Rightarrow Wilks theorem can be used to translate to (log-)likelihood.

Single measurement, symmetric error, HL_Gaussian

 \Rightarrow Well this is as simple as:

 \Rightarrow Wilks theorem can be used to translate to (log-)likelihood.

Multiple measurement, symmetric error,

HL_nDimGaussian

 \Rightarrow You need to pass two arguments:

$$\begin{array}{l} \text{Observables:} \\ - \left[& "BR1", & 0.1, & 0.02 \right] \\ - \left[& "BR2", & 0.2, & 0.01, & 0.01 \right] \\ - \left[& "BR3", & 0.4, & 0.04 \right] \\ \text{Correlation:} \\ - \left[& "BR1", & "BR2", & "BR3" \right] \\ - \left[& 1. & , & 0.2 & , & 0 & \right] \\ - \left[& 0.2, & 1., & 0. & \right] \\ - \left[& 0 & , & 0., & 1. & \right] \end{array}$$

 \Rightarrow From this one constructs the covariance matrix, and evaluates the χ^2 :

$$\chi^2 = V^T \mathrm{Cov}^{-1} V_z$$

(7)

Measurement, asymmetric error, HL_BifurGaussian,

HL_ndimBifurGaussian

 \Rightarrow You need to pass two arguments:

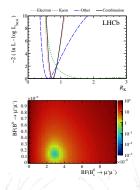
 \Rightarrow We choose to interpret this as Bifurcated Gaussian:

$$\operatorname{Cov}_{i,j} = \begin{cases} \operatorname{Corr}_{i,j} \sigma_{+}^{i} \sigma_{+}^{j}, & \text{if } x^{i} \geqslant x_{obs}^{i} \text{ and } x^{j} \geqslant x_{obs}^{j} \\ \operatorname{Corr}_{i,j} \sigma_{+}^{i} \sigma_{-}^{j}, & \text{if } x^{i} \geqslant x_{obs}^{i} \text{ and } x^{j} < x_{obs}^{j} \\ \operatorname{Corr}_{i,j} \sigma_{-}^{i} \sigma_{+}^{j}, & \text{if } x^{i} < x_{obs}^{i} \text{ and } x^{j} \geqslant x_{obs}^{j} \\ \operatorname{Corr}_{i,j} \sigma_{-}^{i} \sigma_{-}^{j}, & \text{if } x^{i} < x_{obs}^{i} \text{ and } x^{j} < x_{obs}^{j} \end{cases}$$

Marcin Chrzaszcz (CERN)

/ 17

(8)


Likelihoods, HL_ProfLikelihood, HL_nDimLikelihood

\Rightarrow Here we add just the location of ROOT object.

ROOTData: data/HEPData-ins1599846-v1-Table_1.root TGraphPath: "Table 1/Graph1D_y1"

ROOTData: data/LHCb/RD/Bs2mumu_5fb/histB2mumu.root TH2Path: "h_2DScan"

⇒ This is the best way to publish results!!!
 ⇒ The problem is in what way one should publish the higher dim likelihoods?

Publishing data HL_ExpData

\Rightarrow The YAML entry:

```
ROOTData: data/toy/data.root
TTreePath: t
Observables:
- [ x ]
- [ y ]
- [ z ]
```

Weight: w

 \Rightarrow Set the PDF you want to fit:

double (*fun)(vector<double> par , vector<double> point) ⇒ The program will evaluate the (log-)likelihood on the whole dataset

for given parameters.

 \Rightarrow You only need a scanning tools and you are done.

Useful functions

\Rightarrow Search for measurement you need:

```
python lookup.py —Arxiv 1705.05802 1
Found files: 2
../data/examples/RKstar_lowq2.yaml 3
```

\Rightarrow Create citation file:

Aaij:2017vbb		
b2mumu.yaml		

 $\frac{1}{2}$

To prepare the BiBtex file user should run the make_citations.py script located in the utils directory:

```
cd utils
python make_citations.py list.txt
```

Other things in the pipeline, a bit lost but need to reactivated

- \Rightarrow Backending flavio.
- \Rightarrow Backending EOS.

Backup

