Observation of the $B_s^0 \to \overline{D}^0 K^+ K^-$

Marcin Chrzaszcz mchrzasz@cern.ch

> LBT meeting, CERN May 4, 2018

CERN

Yellow pages

 \Rightarrow Proponents: Vincent Tisserand, Stephane T'Jampens, Wenbin Qian, Nicolas Déléage

⇒ Reviewers: Mark Whitehead (chair), Anton Poluektov

- \Rightarrow EB: Fred Blanc
- \Rightarrow EB readers: Franco Bedeschi, Mitesh Patel

Twiki: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ B02D0KK

 \Rightarrow Jurnal: PRD.

- \Rightarrow Deadline for comments: 9th May.
- \Rightarrow Please send me comments before: 8^{th} May.

Physics in the paper

- \Rightarrow Observation of $B_s^0 \to \overline{D}^0 K^+ K^-$.
- $\Rightarrow \text{Precise determination of} \\ B \to \overline{D}^0 K^+ K^-.$
- \Rightarrow Limited physics applications so far.
- \Rightarrow Future possible measurement of γ angle.

Analysis strategy

- \Rightarrow We look for $B_s^0/B^0 \to \overline{D}^0 K^+ K^-$.
- \Rightarrow Normalize the decay to: $B^0 \rightarrow \overline{D}^0 \pi^+ \pi^-$.
- \Rightarrow Run1 analysis (3 fb⁻¹).
- ⇒ The branching fraction is relativity well known: $\mathcal{B}(B^0 \to \overline{D}^0 \pi^+ \pi^-) = (8.8 \pm 0.5) \times 10^{-4}$ ¹ ⇒ For B_s^0 us f_s/f_d .

¹The decay normally is dominated by $B \to D^* \pi$, which is vetod.

MVA

⇒ Data driven method to get MVA: $B \rightarrow \overline{D}\pi\pi$ as signal proxy sweighted. (the good). ⇒ The bad:

To compute the *sWeights*, the signal and combinatorial background vields are de-181 termined using an unbinned extended maximum likelihood fit to the invariant mass 182 distribution of B^0 candidates. The fit uses a Crystal Ball (CB) function [41] and a 183 Gaussian function for the signal distribution and an exponential function for the combina-184 torial background distribution in the mass range of [5240; 5420] MeV/ c^2 . To compute the 185 sWeights, the above fit is repeated within the signal region [5240; 5320] MeV/ c^2 with all 186 the parameters fixed to the result of the initial fit, except the number of the signal and the 187 background events, which are found to be $44,695 \pm 537$ and $81,708 \pm 570$, respectively 188 and correspond to a signal purity of $(35.4 \pm 0.6)\%$. The distributions of the discriminating 189

MVA

 \Rightarrow The good: they identified at the beginning 14 "standard" variables for MVA.

 \Rightarrow Removed the lest sensitive variables and ended up 5 variables with minimal loose of discriminating power.

 \Rightarrow BDT, MLP tried. Fisher has similar performance and was used.

Marcin Chrzaszcz (CERN)

PID

- \Rightarrow PID used to discriminate the control channel over signal channel.
- \Rightarrow PID selection is optimized.
- ⇒ The description is very vague in paper. In ANA note: optimized on $\frac{s}{\sqrt{s+b}}$ on NONresampled MC.

 \Rightarrow They found that the optimum point is very shallow so it might be ok.

Marcin Chrzaszcz (CERN)

Backgrounds

- \Rightarrow Some can be defeted with PID cuts.
- \Rightarrow Other remain in the fit.
- \Rightarrow They used KDE on MC samples.

 \Rightarrow The most dangerous one is fitted on data using correct mass hypothesis to get the yield.

 \Rightarrow One problem that is observed is the $B_s^0 \rightarrow D^* K^- \pi^+$: They

expected 540 events however the fit resulted in -2167 ± 1514 events. They assign a systematic.

Observation

Marcin Chrzaszcz (CERN

Review of $B_s \rightarrow D^0 K K$

/13

Normalization

The ratios of branching fractions are calculated as

$$\frac{\mathcal{B}\left(B^{0}\to\overline{D}{}^{0}K^{+}K^{-}\right)}{\mathcal{B}\left(B^{0}\to\overline{D}{}^{0}\pi^{+}\pi^{-}\right)} = \frac{N_{B^{0}\to\overline{D}{}^{0}K^{+}K^{-}}}{N_{B^{0}\to\overline{D}{}^{0}\pi^{+}\pi^{-}}} \times \frac{\varepsilon_{B^{0}\to\overline{D}{}^{0}\pi^{+}\pi^{-}}}{\varepsilon_{B^{0}\to\overline{D}{}^{0}K^{+}K^{-}}},\tag{5}$$

and

$$\frac{\mathcal{B}\left(B_s^0 \to \overline{D}{}^0K^+K^-\right)}{\mathcal{B}\left(B^0 \to \overline{D}{}^0K^+K^-\right)} = r_{B_s^0/B^0} \times \frac{\varepsilon_{B^0 \to \overline{D}{}^0K^+K^-}}{\varepsilon_{B_s^0 \to \overline{D}{}^0K^+K^-}} \times \frac{1}{f_s/f_d},\tag{6}$$

Efficiency

	$B^0\to \overline{D}{}^0\pi^+\pi^-$	$B^0\to \overline{D}{}^0K^+K^-$	$B^0_s\to \overline{D}{}^0K^+K^-$
$\varepsilon^{\text{geom}}$ [%]	15.8 ± 0.0	17.0 ± 0.0	16.9 ± 0.0
$\varepsilon^{\text{sel} \mid \text{geom}}$ [%]	1.2 ± 0.0	1.1 ± 0.0	1.1 ± 0.0
$\varepsilon^{\text{PID} \mid \text{sel & geom }} [\%]$	95.5 ± 1.2	75.7 ± 1.4	76.3 ± 2.0
ε^{TIS} [%]	42.2 ± 0.7	42.2 ± 0.7	42.2 ± 0.7
ε^{TOS} [%]	40.6 ± 0.6	40.3 ± 0.8	40.6 ± 1.2
$\bar{\varepsilon}_{\rm corr.}^{\rm DP}$ [%]	85.5 ± 2.9	95.7 ± 4.1	$101.0^{+3.2}_{-7.1}$
$\varepsilon^{\text{tot},TIS}$ [10 ⁻⁴]	6.4 ± 0.2	5.9 ± 0.3	$6.0^{+0.3}_{-0.5}$
$\varepsilon^{\text{tot},TOS}$ [10 ⁻⁴]	6.1 ± 0.2	5.7 ± 0.3	$5.8_{-0.5}^{+0.3}$
$\varepsilon^{\text{tot}}[10^{-4}]$	10.6 ± 0.3	9.8 ± 0.4	$10.1^{+0.4}_{-0.6}$

Systematics

Table 4: Summary of relative (in %) systematic uncertainties on yields $N_{B^0 \to \overline{D}^0 \pi^+ \pi^-}$, $N_{B^0 \to \overline{D}^0 K^+ K^-}$ and ratio $r_{B^0_s/B^0}$, due to the PDFs modelling in the $m_{\overline{D}^0 \pi^+ \pi^-}$ and $m_{\overline{D}^0 K^+ K^-}$ fits. The uncertainties are uncorrelated and summed in quadrature.

Source	$N_{B^0\to \overline{D}{}^0\pi^+\pi^-}$	$N_{B^0\to \overline{D}{}^0K^+K^-}$	$r_{B_s^0/B^0}$
$B^0_{(s)} \to \overline{D}{}^0 h^+ h^-$ signal PDF	1.0	2.1	4.2
$B^0 \to \overline{D}^{*0} [\overline{D}{}^0 \gamma] \pi^+ \pi^-$	1.6	_	_
$B^0 ightarrow \overline{D}{}^0 K^+ \pi^-$	0.3	_	_
$B_s^0 \to \overline{D}^{*0} K^- \pi^+$	0.4	1.4	0.4
$B^{\bar 0}_s \to \overline D{}^{*0}K^+K^-$	—	0.5	1.3
Smearing & shifting	0.5	0.1	0.9
Total	2.0	2.6	4.5
Total on $N_{\rm sig}/N_{\rm control}$	9	5.2	4.5

Results

$$\Rightarrow \frac{\mathcal{B}(B^0 \to \overline{D}^0 K^+ K^-)}{B^0 \to \overline{D}^0 \pi^+ \pi^-} = (6.9 \pm 0.4 \pm 0.3) \%$$

$$\Rightarrow \frac{\mathcal{B}(B_s^0 \to \overline{D}^0 K^+ K^-)}{B^0 \to \overline{D}^0 K^+ K^-} = (94.1 \pm 8.9 \pm 8.5) \%$$

$$\Rightarrow \mathcal{B}(B^0 \to \overline{D}^0 K^+ K^-) = (6.1 \pm 0.4 \pm 0.3 \pm 0.3) \times 10^{-5}$$

$$\Rightarrow \mathcal{B}(B_s^0 \to \overline{D}^0 K^+ K^-) = (5.7 \pm 0.5 \pm 0.5) \times 10^{-5}$$

Backup