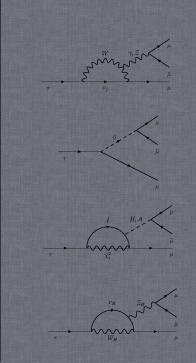
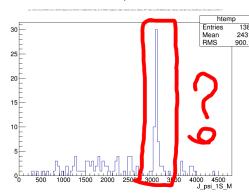
Answeres to questions raised by conveners on EW penguin.


Marcin Chrząszcz^{1,2}, Nicola Serra¹

¹ University of Zurich , ² Institute of Nuclear Physics, Krakow,

October 16, 2013



More Robust calculation of efficiency

We investigated further the events that have one real μ as candidate.

- 1 We observed J/ψ peak after vetoing this resonance.
- 2 Most of the non μ had TRUEID==0.
- If we account for truth matching problems we obtain the following efficiency.

Update on analysis 2 / 3

More Robust calculation of efficiency

Efficiency for 2 real μ ID as μ	
PID <i>μ>-</i> 3	95.3%
PIDμ>0	97.4%
$PID\mu>5^1$	99.2%

Conclusion: Our bck is purely dimuon!

PS. If you think about asking what the remaining 0.8% are.., just don't.

M.Chrzaszcz, N.Serra 2013 Update on analysis

¹²⁰¹¹ analysis had similar cut inside BDT

More advanced generator cuts?

We tried two approaches:

Require additional track close to dimuon pair.

Update on analysis

More advanced generator cuts?

We tried two approaches:

• Require additional track close to dimuon pair.

Requring 3 tracks doesn't help at all. 98% of the cases the DOCA between 3 tracks is the dimuon doca(what you would expected). in 80% of cases the minimum DOCA of three tracks is 0(because of semi-leptonic decays).

Update on analysis