Answers to questions raised by conveners on EW penguin, Vol3.

Marcin Chrząszcz ${ }^{1,2}$, Nicola Serra ${ }^{1}$

${ }^{1}$ University of Zurich, ${ }^{2}$ Institute of Nuclear Physics, Krakow,

October 21, 2013

University of Zurich ${ }^{\text {Z2H }}$

Lets make calculations really slowly

Let's take just the stripping line(this is incomplete because of the the offline cuts)(J / ψ veto is applied everywhere):

- total: 10835
- dimuon ${ }^{1}: 9085$
- efficiency: 83\%
${ }^{1}$ mu1ID==13 and mu2ID==13

Lets make calculations really slowly

Immediately after stripping we have the following cuts:
piminusisMuon=0 KplusisMuon=0 KplusPIDK>-5 piminusPIDK<25

- total: 4708
- dimuon ${ }^{1}: 4333$
- efficiency: 92\%

Lets make calculations really slowly

then we discovered that mulD==0 are still muons: MU1ID=0 or Mu2ID=0(reminder we have Jpsi veto!):

Lets make calculations really slowly

So we require that muons have some real truth matched ID different form zero:

- total: 4547
- dimuon ${ }^{1}: 4333$
- efficiency: 95.3%

Cross check: 161 (ghots events, see plot) $+4547=4708$ (no ghost cut). All consistent!

Lets make calculations really slowly

Then we play with PID cuts. Putting a cut grater then 5(3). With this cuts:

- total: 1956
- dimuon ${ }^{1}: 1939$
- efficiency: 99\% (97,4\%)

Lets make calculations really slowly

Why do ghosts change so much and why are they harmless:

- As Mitesh wanted I am VETOing J $/ \psi$.
- Of coz we have a lot of those.
- Is turns out that the ghost ratio is 0.5%.
- Even 0.5% from $13879 \mathrm{~J} / \psi$ makes a difference cuz they are treated as non-muon bck.

Please note that $161 / 4547$ is not the ghost rate.

SPARES

After the pure stripping we are applying:
(1) Kismuon=0 and piismuon=0
(2) KpidK>5 and piPIDK<25

Starting from 10835 applying following number of events remain:
(1) 8833
(2) 5662

