MatrixNet, TMVA, Isolation

Marcin Chrzaszcz^{1,2}, Tatiana Likhomanenko^{3,4},

Andrey Ustyuzhanin^{3,4}

November 6, 2013

 1 University of Zurich, 2 Institute of Nuclear Physics, 3 Yandex, 4

Kurchatov Institute

2 MVA traing Folding technique Folding results

Until now every analysis that used track isolation parameter used the ones develeloped and optimised for $B_s \rightarrow \mu\mu$. This is based on an abstract definitions of isolating and non-isolating tracks:

- Non-isolating track to a given track(μ from $B_s \rightarrow \mu\mu$ for example) will be a track that has the same primary mother as muon.
- Isolating is the negation of non-isolating.

Iso optimisation

This definition may lead to false implications

- In detector we don't know reconstruct the full event.
- So we don't have the same information that we have on MC
- The idea is to train Signal vs Background.
- Idea developed for $\tau \to {\rm 3}\mu$

інсь гнср

Iso optimisation

Iso optimisation

For each event you build instead:

- Isolation is defined for tracks in the event.
- You have to move from track bases to even bases.
- Usually ideas: take mean, min, etc.
- See which performs better in final MVA

There is one basic truth when it comes to MC:

There is one basic truth when it comes to MC:

Trust me... size matters, bro.

There is one basic truth when it comes to MC:

Trust me... size matters, bro. How to get more training set?

MVA traing

Folding Data Set, How to

Take your data Set:

Folding Data Set, How to

Training

MatrixNet, TMVA, Isolation

- Using this simple technique we increase our training sample size :)
- One can better tune your TMVa.
- Procedure is bias free.

- For ${\rm B} \to {\rm K}^* \mu \mu$ we used 10 folds.
- Train TMVA and MatrixNet.
- See the gain in the yields.

• Apply the following presection cuts:

- **1** PID cuts for K, π .
- Ø K* mass cut.
- C vetos.
- Trigger as in 2011
- **5** Swap: $\pi \leftrightarrow K$, $\pi \leftrightarrow \mu$, $K \leftrightarrow \mu$
- $\bigcirc \phi$ veto
- B⁰_s veto.
- (3) Λ_b veto.

HCP MatrixNet/TMVa training

• Put the standard variables inside classifiers:

Isolations B_DIRA_OWNPV 6 P, PT VERTEX_CHI2 IF, LFE, FD 6 PID

MVA traing

MVA traing

HCP MatrixNet/TMVa ROCs

- All folds have the same ROC curve prediction.
- Good agreement between the folds.

q^2	Last BDT		NEW BDT		MatrixNet	
[GeV]	Signal	Bck	Signal	Bck	Signal	Bck
0.1,2	407	58	407	27	405	41
2, 4.3	202	95	232	75	233	66
4.3, 8.68	573	170	599	180	644	174
10.09, 12.86	508	93	515	109	516	115
14.18, 16	310	49	322	48	346	39
16,19	359	34	374	32	385	34

Conclusions

• New MVAs perform better then the old one.

- Ready for $2fb^{-1}$ data. 2
- B Have one more trick we want to try :)
- Once we freeze 2012 we will do the same to 2011 data.

Questions:

- Is FOM $\frac{s}{s+h}$ really the right one to use?
- Maybe some toy MC studies? \mathbf{Q}
- Investigate the angle efficiency on MC.