Update on measurement of Bose-Einstein Correlations

Marcin Chrzaszcz^{1,2}, Marcin Kucharczyk^{1,3},

 ${\sf Tadeusz} \ {\sf Lesiak}^1$

September 13, 2013

¹ Krakow, ² Zurich, ³ Milano

Update on measurement of Bose-Einstein Correlations

From interferometry to particle Physics

Intensity interferometry was discovered in 1950s by Hanbury-Brown, Twiss (HBT Interferometry) as a method of measuring the angular diameters of radio sources.

It relies on the fact that two photons emitted from the source have to be correlated due to second order interference effect.

 $C(d) = \frac{\langle I_1 \rangle \langle I_2 \rangle}{\langle I_1 I_2 \rangle} \sim k\theta d$, where $\theta = R/L$. By changing the *d* one can measure the diameter of the source.

From interferometry to particle Physics

For two identical particles emited from a source we expect a symmetric wave function:

 $\Psi_{1,2}^s = \frac{1}{\sqrt{2}}(\Psi_{11}\Psi_{22} + \Psi_{12}\Psi_{21})$, where Ψ_{ij} is a wave function of a particle emitted at i and observed at j. So the propablity density of observing two bosons with momenta q_1 and q_2 is:

$$\left|\Psi_{1,2}^{s}\right|^{2} = 1 + \cos(\Delta \overrightarrow{q} \Delta \overrightarrow{r})$$
, where $\Delta \overrightarrow{q} = q_{1} - q_{2}$, $\Delta \overrightarrow{r} = r_{1} - r_{2}$

From interferometry to particle Physics

Assuming spherical symmetry of the source: $\mathcal{P}(\overrightarrow{q}) = \int |\rho(r; \overrightarrow{q})|^2 d^3 \overrightarrow{r}$, the probability of observing two particles with two momenta is given by: $\mathcal{P}(\overrightarrow{q_1}, \overrightarrow{q_2}) = \int |\Psi_{1,2}^s|^2 |\rho(\overrightarrow{r_1})| |\rho(\overrightarrow{r_2})| d^3r_1 d^3r_2$, applying this expression to general 2^{nd} correlation function: $C_2(q_1, q_2) = \frac{\mathcal{P}(q_1, q_2)}{\mathcal{P}(q_1)\mathcal{P}(q_2)} = \frac{\mathcal{P}(q_1, q_2)}{\mathcal{P}(q_1, q_2)^{ref}}$ one gets: $C_2(q_1, q_2) = 1 + \frac{\int cos[\Delta \overrightarrow{q}(\overrightarrow{r_1} - \overrightarrow{r_2}) |\rho(\overrightarrow{r_1})|^2 |\rho(\overrightarrow{r_2})|^2}{\mathcal{P}(q_1)\mathcal{P}(q_2)}$

From interferometry to particle Physics

Performing a Fourier transform:

LHC

$$\mathcal{C}(Q) = 1 + |\widehat{
ho}(Q)|^2$$
 , where $\widehat{
ho}(Q) = \int e^{-irQ} dr$

Assuming Gaussian spread of the source: $\rho(r) = R_0 e^{-\frac{r^2}{2R^2}}$, we can simplify the correlation function:

$$C(Q) = 1 + e^{-R^2Q^2}$$

This equation is then corrected for the source incoherence, by introducing an free parameter λ :

$$C(Q) = N(1 + \lambda e^{-R^2 Q^2})$$
⁽¹⁾

Eq.(1) is so called Goldhaber parametrization and allows to measure the radius of the source.

Reference samples

 $\mathcal{P}(q_1,q_2)^{ref}$ can be estimated from reference samples:

MC without BEC.

- Absence of Coulomb effects in generator.
- Data-MC agreement.
- Onlike-sign charge particles
 - Resonances contribution
 - Derived from data
- Sent-mixing
 - Mixing events.
 - PV mixing.

- Longitudinal Centre-of-Mass System(LCMS) is defined as a system where sum of 3-momenta $\vec{q_1} + \vec{q_2}$ is perpendicular to a reference axis(jet, thrust, z).
- Q^2 can be written: $Q^2 = 1 + \lambda e^{-Q_{t,out}^2 R_{t,out}^2 - Q_{t,side}^2 R_{t,side}^2 - Q_{t,long}^2 R_{t,long}^2} = 1 + \lambda e^{-Q_{t,\perp}^2 R_{t,\perp}^2 - Q_{t,\parallel}^2 R_{t,\parallel}^2}$
- One can perform 1,2 or 3 dim analysis.

Update on measurement of Bose-Einstein Correlations

LEP (pions): 1-dimensional analyses

LEP	(pions)	: 2- and 3	 dimensional 	analyses
-----	---------	------------	---------------------------------	----------

Hadron-hadron	Reference sample				Experiment
	Unlike		MC or event-mixed		
	R [fm]	λ	R [fm]	λ	
$\pi^{\pm}\pi^{\pm}$ (BEC)	0.82 ± 0.04	0.48 ± 0.03	0.52 ± 0.02	0.30 ± 0.01	ALEPH
	0.83 ± 0.03	0.31 ± 0.02	0.47 ± 0.03	0.24 ± 0.02	DELPHI
	-	-	0.46 ± 0.02	0.29 ± 0.03	L3
	0.96 ± 0.02	0.67 ± 0.03	0.79 ± 0.02	0.58 ± 0.01	OPAL
$\pi^0 \pi^0$ (BEC)	-	-	0.31 ± 0.10	0.16 ± 0.09	L3
	-	-	0.59 ± 0.11	0.55 ± 0.15	OPAL

$R_{t,out}$ [fm]	$R_{t,side}$ [fm]	R_{\perp} [fm]	R_{\parallel} [fm]	Experiment
-	-	0.47 ± 0.01	0.77 ± 0.01	ALEPH
		0.79 ± 0.01	0.87 ± 0.02	ALEPH
-	-	$0.53 \pm 0.02 \pm 0.07$	$0.85 \pm 0.02 \pm 0.07$	DELPHI
	$0.59 \pm 0.01^{+0.03}_{-0.13}$	-	$0.74 \pm 0.02^{+0.04}_{-0.03}$	L3
$0.65 \pm 0.01^{+0.02}_{-0.12}$	$0.81 \pm 0.01^{+0.02}_{-0.03}$	-	$0.99 \pm 0.01^{+0.03}_{-0.02}$	OPAL

LEP and CMS results

LEP: 1-dimensional analyses

Hadron-hadron	R [fm]	λ	Experiment
$K^{\pm}K^{\pm}$ (BEC)	$0.48 \pm 0.04 \pm 0.07$	$0.82 \pm 0.11 \pm 0.25$	DELPHI [47]
	0.56 ± 0.08 $^{+0.07}_{-0.06}$	0.82 ± 0.22 $^{+0.17}_{-0.12}$	OPAL [48]
$K_S^0 K_S^0$ (BEC)	$0.65 \pm 0.07 \pm 0.15$	$0.96 \pm 0.21 \pm 0.40$	ALEPH (MC ref.) [49]
	$0.57 \pm 0.04 \pm 0.14$	$0.63 \pm 0.06 \pm 0.14$	ALEPH (mix ref.) [50]
	$0.55 \pm 0.08 \pm 0.12$	$0.61 \pm 0.16 \pm 0.16$	DELPHI [47]
	$0.76 \pm 0.10 \pm 0.11$	$1.14 \pm 0.23 \pm 0.32$	OPAL [51]
$\bar{p}\bar{p}$ (FDC)	$0.11 \pm 0.01 \pm 0.01$	$0.49 \pm 0.04 \pm 0.08$	ALEPH [50]
	$0.142 \pm 0.035 \pm 0.047$	$0.76 \pm 0.16 \pm 0.29$	OPAL [52]
$\Lambda\Lambda$ (FDC)	$0.11 \pm 0.02 \pm 0.01$		ALEPH [53]
$\Lambda\Lambda$ (FDC)	$0.17 \pm 0.13 \pm 0.04$	-	ALEPH [53]
(spin analyses)	$0.11 {}^{+0.05}_{-0.03} \pm 0.01$	-	DELPHI [54]
	$0.19 {}^{+0.03}_{-0.07} \pm 0.02$	-	OPAL [55]

CMS (2010): 1-dimensional analysis, all charged particles, BEC

Mult.	p val.	С	λ	r (fm)	$\delta (10^{-3})$
range	(%)				GeV^{-1})
2-9	97	0.90 ± 0.01	$0.89 \pm 0.05 \pm 0.20$	$1.00 \pm 0.07 \pm 0.05$	72±12
10 - 14	38	0.97 ± 0.01	$0.64 \pm 0.04 \pm 0.09$	$1.28 \pm 0.08 \pm 0.09$	18 ± 5
15 - 19	27	0.96 ± 0.01	$0.60 \pm 0.04 \pm 0.10$	$1.40 \pm 0.10 \pm 0.05$	28 ± 5
20-29	24	0.99 ± 0.01	$0.59 \pm 0.05 \pm 0.17$	$1.98 \pm 0.14 \pm 0.45$	13± 3
30-79	28	$1.00{\pm}0.01$	$0.69 {\pm} 0.09 {\pm} 0.17$	$2.76 {\pm} 0.25 {\pm} 0.44$	10± 3

- MiniBias Stripping lines.
- 2011 data.
- Stripping 20.
- Select all particles that come from PV with cuts:
 - *TRKChi*2 < 2.6
 - IP < 0.2mm
 - IPCHI2 < 2.6
 - PIDNN(π, K) > 0.25
 - ghostNN < 0.3
 - P > 0.2GeV
 - Pt > 0.1 GeV

- MiniBias Stripping lines.
- 2011 data.
- Select all particles that come from PV with cuts:
 - TRKChi2 < 2.
 - IP < 0.1mm
 - *IPCHI*2 < 1.8
 - PIDNN(π) > 0.8, PIDNN(K) > 0.6
 - ghostNN < 0.2
 - P > 0.2 GeV
 - Pt > 0.1 GeV

Enhancement at low Q^2 region. We selected $\mathcal{O}(10^8)~\pi$ pairs, and $\mathcal{O}(10^6)~K$ pairs.

Update on measurement of Bose-Einstein Correlations

We can rewrite Q in form:

$$Q = \sqrt{-2q_{\perp 1}q_{\perp 2}[\cosh(y_1 - y_2) - \cos(\phi_1 - \phi_2)]}$$
(2)

,where y_i are the pseudo-rapidity, ϕ_i are azimuthal angles. We see BEC

We can rewrite Q in form:

$$Q = \sqrt{-2q_{\perp 1}q_{\perp 2}[\cosh(y_1 - y_2) - \cos(\phi_1 - \phi_2)]}$$
(3)

,where y_i are the pseudo-rapidity, ϕ_i are azimuthal angles. We see BEC

Three body correlations

Generalization of two body correlations

Assuming no correlations in space the Wigner function can be expressed¹

 $W(p_1, p_2, p_3, x_1, x_2, x_3) = \Omega_0(p_1, p_2, p_3)w(p_1, x_1)w(p_2, x_2)w(p_3, x_3)$ (4)

This leads to correlation function:

$$C_{3}(p1, p2, p3) = |\widehat{w}(P_{12}, \Delta_{12})|^{2} + |\widehat{w}(P_{23}, \Delta_{23})|^{2} + |\widehat{w}(P_{31}, \Delta_{31})|^{2} + 2\mathcal{R}[\widehat{w}(P_{12}, \Delta_{12})\widehat{w}(P_{23}, \Delta_{23})\widehat{w}(P_{31}, \Delta_{31})]$$
(5)

,where
$$\Delta_{ij} = p_i - p_j$$
, and $\widehat{w}(P_{ij}, \Delta_{ij}) = \int dx_i dx_j W(P_{ij}, x) e^{i \times \Delta_{ij}}$

¹Based on Prof. Bialas's talk at cern in July on soft QCD

Let us consider simple ansatz:

$$W(p_1, p_2, x_1, x_2) = \Omega_0(p_1, p_2)[V(x_1)V(x_2) + \alpha V_2(x_1, x_2)]$$
(6)

,where
$$V(x) = \int \phi(x - X) V_c(X) dX$$
,
 $V_2 = \int V_c(X) \phi(x_1 - X) \phi(x_2 - X) dX$

Three body correlations

Probing Cluster Model

Let us consider simple ansatz:

$$W(p_1, p_2, x_1, x_2) = \Omega_0(p_1, p_2)[V(x_1)V(x_2) + lpha V_2(x_1, x_2)]$$
 (6)

,where $V(x) = \int \phi(x - X)V_c(X)dX$, $V_2 = \int V_c(X)\phi(x_1 - X)\phi(x_2 - X)dX$ $V_c(X)$ is the distribution of clusters in space. $\phi(x - X)$ is the shape of the cluster. $V(x_1)V(x_2)$ emission from two clusters. $V_2(x_1, x_2)$ emission from single cluster.

The correlation function for this ansatz takes form:

$$C(p_1, p_2) = |\widehat{V_c}(\Delta_{12})\widehat{\phi}(\Delta_{12})|^2 + \alpha |\widehat{\phi}(\Delta_{12})|^2 \quad (7)$$

where $\widehat{\phi}(\Delta_{12}) = \int dx \phi(x) e^{ix\Delta_{12}}$

Three body correlations

Dependence R on hadron mass

- Bialas, Zalewski, Phys.Rev. D62 (2000) 114007
- 2 LHCb can access much higher masses than LEP.
- Measurement of BEC in charm sector.

- Theoretical support from Krakow theorists: prof. Bialas, prof. Zalewski.
- BEC clearly visible in data.
- Analysis systematically dominated.
- Enough events to perform first measurement of 3 body correlations.
- BEC measurements in charm sector.