Update on measurement of Bose-Einstein Correlations

Marcin Chrzaszcz ${ }^{1,2}$, Marcin Kucharczyk ${ }^{1,3}$,
Tadeusz Lesiak ${ }^{1}$

September 13, 2013
${ }^{1}$ Krakow, ${ }^{2}$ Zurich, ${ }^{3}$ Milano

(1) Theory introduction

(2) Selection

(3) Preliminary results
(4) Three body correlations
(5) Summary

From interferometry to particle Physics

Intensity interferometry was discovered in 1950s by Hanbury-Brown, Twiss (HBT Interferometry) as a method of measuring the angular diameters of radio sources.
It relies on the fact that two photons emitted from the source have to be correlated due to second order interference effect.

$$
C(d)=\frac{<I_{1}><I_{2}>}{<I_{1} I_{2}>} \sim k \theta d
$$

,where $\theta=R / L$. By changing the d one can measure the diameter of the source.

From interferometry to particle Physics

For two identical particles emited from a source we expect a symmetric wave function:
$\Psi_{1,2}^{s}=\frac{1}{\sqrt{2}}\left(\Psi_{11} \Psi_{22}+\Psi_{12} \Psi_{21}\right)$, where $\Psi_{i j}$ is a wave function of a particle emitted at i and observed at j. So the propablity density of observing two bosons with momenta q_{1} and q_{2} is:

$$
\left|\Psi_{1,2}^{s}\right|^{2}=1+\cos (\Delta \vec{q} \Delta \vec{r}), \text { where } \Delta \vec{q}=q_{1}-q_{2}, \Delta \vec{r}=r_{1}-r_{2}
$$

From interferometry to particle Physics

Assuming spherical symmetry of the source: $\mathcal{P}(\vec{q})=\int|\rho(r ; \vec{q})|^{2} d^{3} \vec{r}$, the probability of observing two particles with two momenta is given by:
$\mathcal{P}\left(\overrightarrow{q_{1}}, \overrightarrow{q_{2}}\right)=\int\left|\Psi_{1,2}^{s}\right|^{2}\left|\rho\left(\overrightarrow{r_{1}}\right)\right|\left|\rho\left(\overrightarrow{r_{2}}\right)\right| d^{3} r_{1} d^{3} r_{2}$,
applying this expression to general $2^{\text {nd }}$ correlation function:
$C_{2}\left(q_{1}, q_{2}\right)=\frac{P\left(q_{1}, q_{2}\right)}{\mathcal{P}\left(q_{1}\right) \mathcal{P}\left(q_{2}\right)}=\frac{P\left(q_{1}, q_{2}\right)}{P\left(q_{1}, q_{2}\right)^{\text {ref }}}$ one gets:
$C_{2}\left(q_{1}, q_{2}\right)=1+\frac{\int \cos \left[\Delta \vec{q}\left(\overrightarrow{r_{1}}-\overrightarrow{r_{2}}\right)\left|\rho\left(\overrightarrow{r_{1}}\right)\right|^{2}\left|\rho\left(\overrightarrow{r_{2}}\right)\right|^{2}\right.}{\mathcal{P}\left(q_{1}\right) \mathcal{P}\left(q_{2}\right)}$

From interferometry to particle Physics

Performing a Fourier transform:

$$
C(Q)=1+|\widehat{\rho}(Q)|^{2} \quad, \text { where } \widehat{\rho}(Q)=\int e^{-i r Q} d r
$$

Assuming Gaussian spread of the source: $\rho(r)=R_{0} e^{-\frac{r^{2}}{2 R^{2}}}$, we can simplify the correlation function:

$$
C(Q)=1+e^{-R^{2} Q^{2}}
$$

This equation is then corrected for the source incoherence, by introducing an free parameter λ :

$$
\begin{equation*}
C(Q)=N\left(1+\lambda e^{-R^{2} Q^{2}}\right) \tag{1}
\end{equation*}
$$

Eq.(1) is so called Goldhaber parametrization and allows to measure the radius of the source.

Reference samples

$\mathcal{P}\left(q_{1}, q_{2}\right)^{\text {ref }}$ can be estimated from reference samples:
(1) MC without BEC.

- Absence of Coulomb effects in generator.
- Data-MC agreement.
(2) Unlike-sign charge particles
- Resonances contribution
- Derived from data
(3) Event-mixing
- Mixing events.
- PV mixing.

LCMS

- Longitudinal Centre-of-Mass System(LCMS) is defined as a system where sum of 3-momenta $\overrightarrow{q_{1}}+\overrightarrow{q_{2}}$ is perpendicular to a reference axis(jet, thrust, z).
- Q^{2} can be written:
$Q^{2}=1+\lambda e^{-Q_{t, \text { out }}^{2} R_{t, \text { out }}^{2}-Q_{t, \text { side }}^{2} R_{t, \text { side }}^{2}-Q_{t, \text { long }}^{2} R_{t, \text { long }}^{2}}=$ $1+\lambda e^{-Q_{t, \perp}^{2} R_{t, \perp}^{2}-Q_{t, \|}^{2} R_{t, \|}^{2}}$

- One can perform 1,2 or 3 dim analysis.

Theory introduction

LEP and CMS results

LEP (pions): 1-dimensional analyses

Hadron-hadron	Reference sample				Experiment
	Unlike		MC or event-mixed		
	$R\|\mathrm{fm}\|$	λ	$R\|\mathrm{fm}\|$	λ	
$\pi^{ \pm} \pi^{ \pm}(\mathrm{BEC})$	0.82 ± 0.04	0.48 ± 0.03	0.52 ± 0.02	0.30 ± 0.01	ALEPH
	0.83 ± 0.03	0.31 ± 0.02	0.47 ± 0.03	0.24 ± 0.02	DELPHI
	-	-	0.46 ± 0.02	0.29 ± 0.03	L3
	0.96 ± 0.02	0.67 ± 0.03	0.79 ± 0.02	0.58 ± 0.01	OPAL
$\pi^{0} \pi^{0}(\mathrm{BEC})$	-	-	0.31 ± 0.10	0.16 ± 0.09	L3
	-	-	0.59 ± 0.11	0.55 ± 0.15	OPAL

LEP (pions): 2- and 3-dimensional analyses

$R_{\text {t.ont }}[\mathrm{fm} \mid$	$R_{\text {txide }}\|\mathrm{fm}\|$	$R_{\perp}\|\mathrm{fm}\|$	$R\|\mathrm{fm}\|$	Experiment
		0.47 ± 0.01	0.77 ± 0.01	ALEPH
		0.79 ± 0.01	0.87 ± 0.02	ALEPH
		$0.53 \pm 0.02 \pm 0.07$	$0.85 \pm 0.02 \pm 0.07$	DELPHI
$0.53 \pm 0.02_{-0.06}^{+0.05}$	$0.59 \pm 0.01_{-0.13}^{+0.01}$	-	$0.74 \pm 0.02_{-0.03}^{+0.01}$	L3
$0.65 \pm 0.01_{-0.12}^{+0.02}$	$0.81 \pm 0.01_{-0.03}^{+0.02}$	-	$0.99 \pm 0.01_{-0.02}^{+0.03}$	OPAL

Theory introduction

LEP and CMS results

LEP: 1-dimensional analyses

Hadron-hadron	R [$\mathrm{fm} \mid$	λ	Experiment	
$K^{ \pm} K^{ \pm}$(BEC)	$0.48 \pm 0.04 \pm 0.07$	$0.82 \pm 0.11 \pm 0.25$	DELPHI \|47	
	$0.56 \pm 0.08{ }_{-0.06}^{+0.07}$	$0.82 \pm 0.22{ }_{-0.12}^{+0.17}$	OPAL [48]	
$K_{S}^{0} K_{S}^{0}(\mathrm{BEC})$	$0.65 \pm 0.07 \pm 0.15$	$0.96 \pm 0.21 \pm 0.40$	ALEPH (MC ref.) \|49	
	$0.57 \pm 0.04 \pm 0.14$	$0.63 \pm 0.06 \pm 0.14$	ALEPH (mix ref.) \|50	
	$0.55 \pm 0.08 \pm 0.12$	$0.61 \pm 0.16 \pm 0.16$	DELPHI [47]	
	$0.76 \pm 0.10 \pm 0.11$	$1.14 \pm 0.23 \pm 0.32$	OPAL [51]	
$\bar{p} \bar{p}$ (FDC)	$0.11 \pm 0.01 \pm 0.01$	$0.49 \pm 0.04 \pm 0.08$	ALEPH [50\|	
	$0.142 \pm 0.035 \pm 0.047$	$0.76 \pm 0.16 \pm 0.29$	OPAL [52]	
A ${ }^{\text {(FDC) }}$	$0.11 \pm 0.02 \pm 0.01$	-	ALEPH [53]	
$\begin{gathered} \Lambda \Lambda \text { (FDC) } \\ \text { (spin analyses) } \end{gathered}$	$0.17 \pm 0.13 \pm 0.04$	-	ALEPH [53]	
	$0.11 \underbrace{+0.05}_{-0.03} \pm 0.01$	-	DELPHI [54]	
	$0.19{ }_{-0.07}^{+0.37} \pm 0.02$	-	OPAL \|55]	

CMS (2010): 1-dimensional analysis, all charged particles, BEC

Mult. range	p val. $(\%)$	C	λ	$r(\mathrm{fm})$	$\delta\left(10^{-3}\right.$ $\left.\mathrm{GeV}^{-1}\right)$
$2-9$	97	0.90 ± 0.01	$0.89 \pm 0.05 \pm 0.20$	$1.00 \pm 0.07 \pm 0.05$	72 ± 12
$10-14$	38	0.97 ± 0.01	$0.64 \pm 0.04 \pm 0.09$	$1.28 \pm 0.08 \pm 0.09$	18 ± 5
$15-19$	27	0.96 ± 0.01	$0.60 \pm 0.04 \pm 0.10$	$1.40 \pm 0.10 \pm 0.05$	28 ± 5
$20-29$	24	0.99 ± 0.01	$0.59 \pm 0.05 \pm 0.17$	$1.98 \pm 0.14 \pm 0.45$	13 ± 3
$30-79$	28	1.00 ± 0.01	$0.69 \pm 0.09 \pm 0.17$	$2.76 \pm 0.25 \pm 0.44$	10 ± 3

LHCb
 Preselection

(1) MiniBias Stripping lines.
(2) 2011 data.
(3) Stripping 20.
(4) Select all particles that come from PV with cuts:

- TRKChi $2<2.6$
- IP $<0.2 \mathrm{~mm}$
- IPCHI $2<2.6$
- $\operatorname{PIDNN}(\pi, K)>0.25$
- ghostNN <0.3
- $P>0.2 \mathrm{GeV}$
- $P t>0.1 \mathrm{GeV}$

HECb
 Selection

(1) MiniBias Stripping lines.
(2) 2011 data.
(3) Select all particles that come from PV with cuts:

- TRKChi2 < 2.
- $I P<0.1 m m$
- IPCHI2 <1.8
- $\operatorname{PIDNN}(\pi)>0.8, \operatorname{PIDNN}(K)>0.6$
- ghostNN <0.2
- $P>0.2 \mathrm{GeV}$
- $P t>0.1 \mathrm{GeV}$

Results in 2011 data

Enhancement at low Q^{2} region. We selected $\mathcal{O}\left(10^{8}\right) \pi$ pairs, and $\mathcal{O}\left(10^{6}\right)$ K pairs.

Results in 2011 data

We can rewrite Q in form:

$$
\begin{equation*}
Q=\sqrt{-2 q_{\perp 1} q_{\perp 2}\left[\cosh \left(y_{1}-y_{2}\right)-\cos \left(\phi_{1}-\phi_{2}\right)\right]} \tag{2}
\end{equation*}
$$

,where y_{i} are the pseudo-rapidity, ϕ_{i} are azimuthal angles. We see BEC

KHCb

Results in 2011 data

We can rewrite Q in form:

$$
\begin{equation*}
Q=\sqrt{-2 q_{\perp 1} q_{\perp 2}\left[\cosh \left(y_{1}-y_{2}\right)-\cos \left(\phi_{1}-\phi_{2}\right)\right]} \tag{3}
\end{equation*}
$$

,where y_{i} are the pseudo-rapidity, ϕ_{i} are azimuthal angles. We see BEC

Generalization of two body correlations

Assuming no correlations in space the Wigner function can be expressed ${ }^{1}$

$$
\begin{equation*}
W\left(p_{1}, p_{2}, p_{3}, x_{1}, x_{2}, x_{3}\right)=\Omega_{0}\left(p_{1}, p_{2}, p_{3}\right) w\left(p_{1}, x_{1}\right) w\left(p_{2}, x_{2}\right) w\left(p_{3}, x_{3}\right) \tag{4}
\end{equation*}
$$

This leads to correlation function:

$$
\begin{array}{r}
C_{3}(p 1, p 2, p 3)=\left|\widehat{w}\left(P_{12}, \Delta_{12}\right)\right|^{2}+\left|\widehat{w}\left(P_{23}, \Delta_{23}\right)\right|^{2}+\left|\widehat{w}\left(P_{31}, \Delta_{31}\right)\right|^{2}+ \\
2 \mathcal{R}\left[\widehat{w}\left(P_{12}, \Delta_{12}\right) \widehat{w}\left(P_{23}, \Delta_{23}\right) \widehat{w}\left(P_{31}, \Delta_{31}\right)\right] \tag{5}
\end{array}
$$

,where $\Delta_{i j}=p_{i}-p_{j}$, and $\widehat{w}\left(P_{i j}, \Delta_{i j}\right)=\int d x_{i} d x_{j} W\left(P_{i j}, x\right) e^{i x \Delta_{i j}}$
${ }^{1}$ Based on Prof. Bialas's talk at cern in July on soft QCD

LHCb
 Three body correlations
 Probing Cluster Model

Let us consider simple ansatz:

$$
\begin{align*}
W\left(p_{1}, p_{2}, x_{1}, x_{2}\right)=\Omega_{0}\left(p_{1}, p_{2}\right) & {\left[V\left(x_{1}\right) V\left(x_{2}\right)\right.} \\
+ & \left.\alpha V_{2}\left(x_{1}, x_{2}\right)\right] \tag{6}
\end{align*}
$$

, where $V(x)=\int \phi(x-X) V_{c}(X) d X$, $V_{2}=\int V_{c}(X) \phi\left(x_{1}-X\right) \phi\left(x_{2}-X\right) d X$

Probing Cluster Model

Let us consider simple ansatz:

$$
\begin{align*}
W\left(p_{1}, p_{2}, x_{1}, x_{2}\right)=\Omega_{0}\left(p_{1}, p_{2}\right) & {\left[V\left(x_{1}\right) V\left(x_{2}\right)\right.} \\
+ & \left.\alpha V_{2}\left(x_{1}, x_{2}\right)\right] \tag{6}
\end{align*}
$$

,where $V(x)=\int \phi(x-X) V_{c}(X) d X$, $V_{2}=\int V_{c}(X) \phi\left(x_{1}-X\right) \phi\left(x_{2}-X\right) d X$ $V_{c}(X)$ is the distribution of clusters in space. $\phi(x-X)$ is the shape of the cluster. $V\left(x_{1}\right) V\left(x_{2}\right)$ emission from two clusters. $V_{2}\left(x_{1}, x_{2}\right)$ emission from single cluster.

Probing Cluster Model

The correlation function for this ansatz takes form:

$$
C\left(p_{1}, p_{2}\right)=\left|\widehat{V_{c}}\left(\Delta_{12}\right) \widehat{\phi}\left(\Delta_{12}\right)\right|^{2}+\alpha\left|\widehat{\phi}\left(\Delta_{12}\right)\right|^{2}
$$

where $\widehat{\phi}\left(\Delta_{12}\right)=\int d x \phi(x) e^{i x \Delta_{12}}$

Dependence R on hadron mass

(1) Bialas, Zalewski, Phys.Rev. D62 (2000) 114007
(2) LHCb can access much higher masses than LEP.
(3) Measurement of BEC in charm sector.

Conclusions

- Theoretical support from Krakow theorists: prof. Bialas, prof. Zalewski.
- BEC clearly visible in data.
- Analysis systematically dominated.
- Enough events to perform first measurement of 3 body correlations.
- BEC measurements in charm sector.

