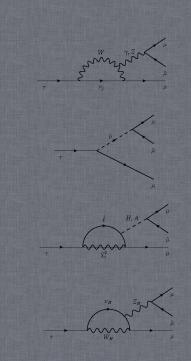
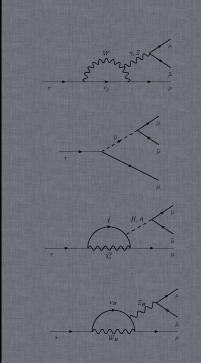
Trigger impact on MVA, weighting problem?


Marcin Chrząszcz^{1,2}

¹ University of Zurich, ² Institute of Nuclear Physics, Krakow,

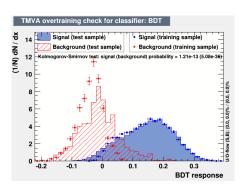
December 2, 2013



Impact of the trigger for the distributions

MC Mixing

Reminder


- Selecting trigger suggested by Paul kills $\frac{1}{3}$ of our training sample.
- Investigated distributions and correlations of this events to see if they can change our classifier output.
- Didn't find any significant difference.
- Final test was to apply it to data and see the effect.

Data test details

- Training done with the same variables.
- Each training was optimised for specific cuts.
- Tested several clasifiers: BDT, BDTG, MLP, MATRIXNET
- Tested on inersidebands, lardge sidebands, whole sample

Results

- All test point out that it's better to keep the nontriggered events for training.
- Not a bis surprised, we are on the downside in terms of statistics.
- · Easy to over train:

Conclusions

- Strongly suggest to keep the nontriggered events for training.
- Can't afford to loose 1/3 of data.
- Very small difference between triggered events and non-triggered events.

MC Mixing

Last week Jon reported that that we have a discrepancy between the number of events in the MC. I decided to rerun whole simulation from scratch for the most relevant channel: $D_s \to \tau X$ Previous time:

- Generator Efficiency: 63.111 ± 0.0766
- Generator Efficiency Cut: 11.9557 ± 0.022

This time:

- Generator Efficiency:63.142 \pm 0.0857
- Generator Efficiency Cut: 11.971 ± 0.0178

Conclusion

Need to sit down with Jon to undestand what is the difference of what we compute

M.Chrzaszcz 2013