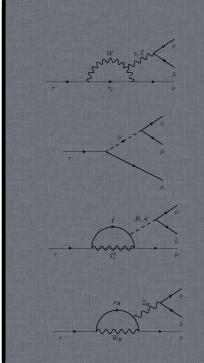
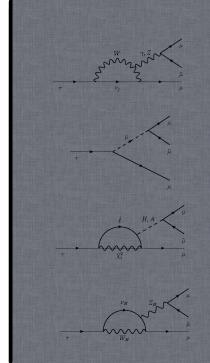
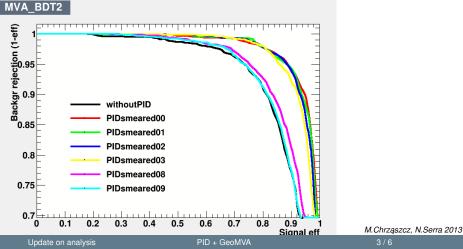
Update


Marcin Chrząszcz^{1,2}, Nicola Serra¹

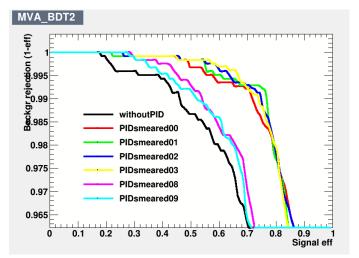
¹ University of Zurich , ² Institute of Nuclear Physics, Krakow,

November 3, 2013

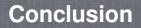



PID + GeoMVA

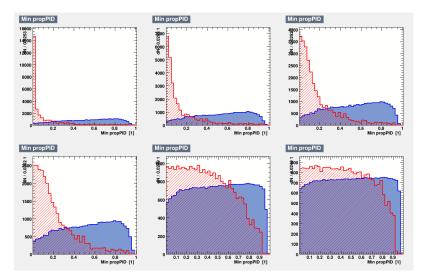
Calibration of PGMVA



Reminder


Last week I shown that we might gain quite a lot by putting PID inside our GEOMVA. Let's see if we are sensitive to poor description of PID in MC(credits to **Helge Voss**):

Closer look



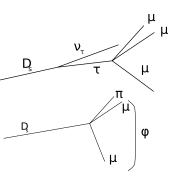
M.Chrząszcz, N.Serra 2013

Clearly our optimistic MC has no impact on our MVA performance.
Tools ready to train it with different information loose="smearing"

Conclusion

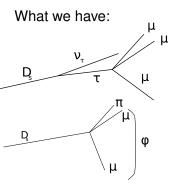
M.Chrząszcz, N.Serra 2013

Update on analysis


PID + GeoMVA

Calibration of PGMVA=PID + GeoMVA

- The biggest worry is if we can calibrate this channel.
- The following idea allowes to calibrate our channel on $D_s \rightarrow \phi \pi$.
- It looks that calibration can be even simpler than the one we make.
- Ok enough of building attention, let's caught to the chase


Calibration of PGMVA=PID + GeoMVA

What we have:

- For free we have 2 mu PID.
- For signal we need 3.
- Let's take our $D_s \rightarrow \phi \pi$ and bin our muons in 3D bins of n_{trk} , $P_{t,\mu}$, and η_{mu} .
- For each of the bins we have a PID distribution for muon
- Then for the π in a given bin we choose a PID according to μ PID in this bin.
- $\mathbf{B} \rightarrow \mathbf{K}^* \mu \mu$ uses a similar approach.

Calibration of PGMVA=PID + GeoMVA

- Calibration is in principle easier.
- Use only one channel, instead of two.