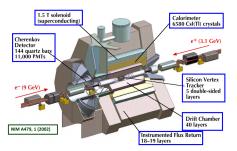
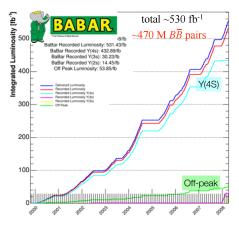
Recent BaBar results on CP violation in B-meson decays

 $\begin{array}{l} \mbox{Marcin Chrząszcz}^1 \\ \mbox{on behalf of the BaBar collaboration} \end{array}$

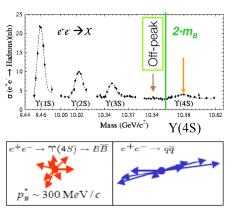
¹ University of Zurich

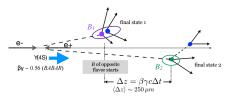

Deep-Inelastic Scattering 2015



April 20, 2015

BaBar Detector


- PEP-II, an asymmetric e⁻e⁺ collider.
- ► Operating mostly at Ŷ(4S) threshold.



B factories

- B mesons produced in a clean environment.
- Just above the m(BB) threshold.

B⁰B⁰ mixing

- Neutral mesons couple to their anti particles via weak interactions.
- $\blacktriangleright \ B^0 \Leftrightarrow \overline{B}{}^0, \ B^0_s \Leftrightarrow \overline{B}{}^0_s, \ K \Leftrightarrow \overline{K}{}^0.$
- We can writhe the weak eigenstates as:

$$|B_{L/H}
angle = rac{1}{\sqrt{p^2+q^2}}(p\,|\mathsf{B}^0
angle \pm q\,|\overline{\mathsf{B}}^0
angle)$$

► Then the CP asymmetry can can be written as: $A_{CP} = \frac{\mathcal{P}(\overline{B}^0 \to B^0) - \mathcal{P}(B^0 \to \overline{B}^0)}{\mathcal{P}(\overline{B}^0 \to B^0) + \mathcal{P}(B^0 \to \overline{B}^0)} \approx 2(1 - |\frac{q}{p}|)$

•
$$\Upsilon(4S)$$
 has an anti-symmetric state:
 $\frac{1}{\sqrt{2}}(B^0(t_1)\overline{B}^0(t_2) - \overline{B}^0(t_1)B^0(t_2))$

One B is a specific flavour state tags the other one.

Inclusive dilepton measurement

- \blacktriangleright B mesons decay in $\sim 10\%$ semileptonicaly.
- Charge of lepton determines the B meson flavour.
- If one observes same sign leptons \rightarrow mixing occurred:

Writing down the mixing provabilities (time integrated):

$$\mathcal{P}^{\pm\pm} \propto (1\pm A_{CP})\chi_d$$

$$\mathcal{P}^{\pm\mp} \propto (1-\chi_d)$$

Detector effects

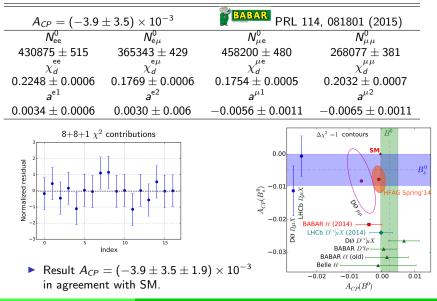
- ▶ Detector is not a perfect device \rightarrow Introduced charge asymmetries a_{ℓ_j} for each ℓ_i .
- $\Upsilon(4S)$ also goes to B⁺B⁻. Contribution: $r_B = N_{B^+B^-}/N_{B^0\overline{B}^0}$.
- Time integrated probability gets modified:

$$\mathcal{P}^{\pm\pm} \propto (1 \pm a_{\ell_1} \pm a_{\ell_2} \pm A_{CP})\chi_d$$
$$\mathcal{P}^{\pm\mp} \propto (1 - \chi_d + r_B)(1 \pm a_{\ell_1} \mp a_{\ell_2})$$

Summing over all events in $\ell_1 \ell_2 \in \{ee, e\mu, \mu e, \mu \mu\}$ categories:

$$\begin{split} N_{\ell_1\ell_2}^{\pm\pm} &= 1/2N_{\ell_1\ell_2}^0(1\pm a_{\ell_1}\pm a_{\ell_2}\pm A_{CP})\chi_d^{\ell_1\ell_2}\\ N_{\ell_1\ell_2}^{\pm\mp} &= 1/2N_{\ell_1\ell_2}^0(1-\chi_d^{\ell_1\ell_2}+r_B)(1\pm a_{\ell_1}\mp a_{\ell_2}) \end{split}$$

- We got 16 observables, and 13 unknowns. a_{ℓ_i} highly correlated.
- ▶ Adding events containing only single electron for *a*_e constrain.
- 17 observables as input to χ² fit, extracting: A_{CP}, 4 signal yields University of 4 efficiency asymmetries, 4 mixing probabilities.


Marcin Chrząszcz (UZH)

Recent BaBar results on CP violation in B-meson decays

Source	(10^{-3})
Generic MC bias correction	1.04
MC branching fractions	0.43
Fake lepton corrections in dilepton	0.77
Fake e correction in single electron	0.65
Neutral/charged B difference	0.74
Direct-/cascade e asymmetry difference	0.44
Direct-/cascade μ asymmetry difference	0.34
Background-to-signal ratios	0.68
Random forest cut efficiency	0.08
Total	1.90
adda.	

- Dominant systematic from bias in MC.
- Secondly the MC/data corrections to PID.
- Difference in charge asymmetry between B⁰ and average of B⁰ and B[±].

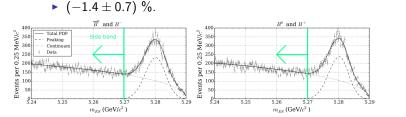
Marcin Chrząszcz (UZH)

Flavour-changing neutral current

- CKM structure in SM allows only the charged interactions to change flavour.
- \blacktriangleright One can escape the CKM structure and produce $b \rightarrow s$ and $b \rightarrow d$ only at loop level.
 - \blacktriangleright This kind of processes are suppressed by the GIM in SM \rightarrow Rare decays.
- ► LHCb already sees a 3.7 σ deviation in the angular observables in B⁰ → K^{*} $\mu^{-}\mu^{+}$. See my talk from yesterday: LINK.
- ► Here we present CP observables in $b \rightarrow s\gamma$ and $b \rightarrow s\ell\ell$ decays.

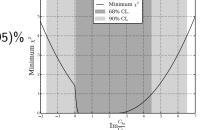
Flavour-changing neutral current

- CKM structure in SM allows only the charged interactions to change flavour.
- \blacktriangleright One can escape the CKM structure and produce $b \rightarrow s$ and $b \rightarrow d$ only at loop level.
 - \blacktriangleright This kind of processes are suppressed by the GIM in SM \rightarrow Rare decays.
- ▶ LHCb already sees a 3.7 σ deviation in the angular observables in B⁰ → K^{*} $\mu^{-}\mu^{+}$. See my talk LINK.
- ► Here we present CP observables in $b \rightarrow s\gamma$ and $b \rightarrow s\ell\ell$ decays.


CP asymmetries in $\mathbf{B} \to X_s \boldsymbol{\gamma}$

- Fully inclusive approach impossible.
- Instead use semi-inclusive (sum of exclusive modes).
- 16 modes used (marked with *)
- Additional requirements:

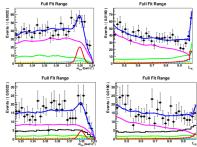
-	Final State		Final State	
-	1*	$B^+ \rightarrow K_S \pi^+ \gamma$	20	$B^0 \rightarrow K_S \pi^+ \pi^- \pi^+ \pi^- \gamma$
	2*	$B^+ \rightarrow K^+ \pi^0 \gamma$	21	$B^0 \rightarrow K^+ \pi^+ \pi^- \pi^- \pi^0 \gamma$
PRD 90, 092001 (2014)	3*	$B_{0}^{0} \rightarrow K^{+}\pi^{-}\gamma$	22	$B^0 \to K_S \pi^+ \pi^- \pi^0 \pi^0 \gamma$
11(2) 50; 052001 (2011)	4	$B^0 \to K_S \pi^0 \gamma$	23*	$B^+_{\rho} \rightarrow K^+ \eta \gamma$
Requirements:	5*	$B^+ \rightarrow K^+ \pi^+ \pi^- \gamma$	24	$B^0 \to K_S \eta \gamma$
•	6*	$B^+ \rightarrow K_S \pi^+ \pi^0 \gamma$	25	$B^+ \rightarrow K_S \eta \pi^+ \gamma$
• $m(X_s) \in (0.6, 2.0)$ GeV	7*	$B^+_{\alpha} \rightarrow K^+ \pi^0 \pi^0 \gamma$	26	$B^+ \to K^+ \eta \pi^0 \gamma$
Indirect cut on	8	$B^0 \to K_S \pi^+ \pi^- \gamma$	27*	$B^0_{\ \gamma} \rightarrow K^+ \eta \pi^- \gamma$
Indirect cut on	9*	$B^0 \rightarrow K^+ \pi^- \pi^0 \gamma$	28	$B^0 \to K_S \eta \pi^0 \gamma$
$E_{\gamma} > 2.3 { m GeV}$	10	$B^0 \to K_S \pi^0 \pi^0 \gamma$	29	$B^+ \to K^+ \eta \pi^+ \pi^- \gamma$
	11*	$B^+ \rightarrow K_S \pi^+ \pi^- \pi^+ \gamma$	30	$B^+ \to K_S \eta \pi^+ \pi^0 \gamma$
► ∆E < 0.15 GeV	12*	$B^+ \rightarrow K^+ \pi^+ \pi^- \pi^0 \gamma$	31	$B^0 \to K_S \eta \pi^+ \pi^- \gamma$
MVA based approach to	13*	$B^+ \rightarrow K_S \pi^+ \pi^0 \pi^0 \gamma$	32	$B^0 \rightarrow K^+ \eta \pi^- \pi^0 \gamma$
	14*	$B^0 \rightarrow K^+ \pi^+ \pi^- \pi^- \gamma$	33*	$B^+ \rightarrow K^+ K^- K^+ \gamma$
get ride of $q ar q$	15	$B^0 \to K_S \pi^0 \pi^+ \pi^- \gamma$	34	$B^0 \rightarrow K^+ K^- K_S \gamma$
background.	16*	$B^0 \rightarrow K^+ \pi^- \pi^0 \pi^0 \gamma$	35	$B^+ \rightarrow K^+ K^- K_S \pi^+ \gamma$
buenground.	17	$B^+ \rightarrow K^+ \pi^+ \pi^- \pi^+ \pi^- \gamma$	36	$B^+ \rightarrow K^+ K^- K^+ \pi^0 \gamma$
	18	$B^+ \rightarrow K_S \pi^+ \pi^- \pi^+ \pi^0 \gamma$	37*	$B^0 \rightarrow K^+ K^- K^+ \pi^- \gamma$
	19	$B^+ \rightarrow K^+ \pi^+ \pi^- \pi^0 \pi^0 \gamma$	38	$B^0 \rightarrow K^+ K^- K_S \pi^0 \gamma$


Asymmetry extraction

- Asymmetry for fitted yields needs to be corrected as in previous analysis detector asymmetries.
- Asymmetry extracted from side-bands.

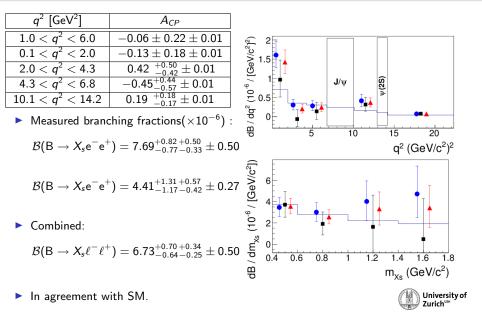
- sults: $A_{CP}(B^+ \rightarrow X_s^+ \gamma) = (4.23 \pm 2.93 \pm 0.95)\%$
- Average:
- $A_{CP} = (1.7 \pm 1.9 \pm 1.0) \%$
- ▶ SM: $A_{CP} \sim 0 \leftrightarrow Im(C_8) \sim 0$

CP asymmetries in $\mathbf{B} \to X_s \ell \ell$


- Very important channel for NP searches.
- Significant deviation found by LHCb.
- CP observables are very clean predictions in SM and almost QCD free.
- Similar "semi-include" modes:

$$\begin{split} & X_{s} = \{\mathsf{K}^{+}, \ \mathsf{K}^{+}\pi^{0}, \ \mathsf{K}^{+}\pi^{-}, \ \mathsf{K}^{+}\pi^{-}\pi^{0}, \\ & \mathsf{K}^{+}\pi^{-}\pi^{+}, \ \mathsf{K}_{s}, \ \mathsf{K}_{s}\pi^{+}, \ \mathsf{K}_{s}\pi^{+}\pi^{0}, \ \mathsf{K}_{s}\pi^{+}\pi^{-}\} \end{split}$$

- Look for two leptons flavours: $\ell \ell = \{ee, \mu \mu\}$
- Additional requirements:
 - ▶ Require: m(X_s) < 1.8 GeV</p>
 - $\Delta E \in [-0.1(-0.05), 0.05]$ for $\ell \ell =$ ee $(\mu \mu)$


Differential branching fraction

- PRL 112 (2014) 211802
- J/ψ, (ψ(2S)) veto:
 6.8 − 10.1 (12.9 − 14.2) GeV
- Suppress $q\bar{q}$ background with a BDT.
- Perform a simultaneous fit to m_{ES} and $L_R = \frac{\mathcal{P}_S}{\mathcal{P}_S + \mathcal{P}_B}$

CP & BR asymmetries results

Conclusions

- 1. B-factories still producing new results.
- 2. Presented new measurements of CP violation in neutral B meson system using inclusive dileptons events.
- **3.** BaBar continues to chase FCNC with measurement of CP asymmetries in: $b \rightarrow s\gamma$ and $b \rightarrow \ell\ell$
- 4. FCNC statistically limited: need future experiments.
- 5. All measurements consistent (for now?) with SM.

Marcin Chrząszcz (UZH)