Status update o $\Lambda_c \rightarrow p \mu^- \mu^+$

Marcin Chrząszcz¹, Tadeusz Lesiak², Mariusz Witek², Borys Nowak²

¹ University of Zurich, ² Institute of nuclear Physics

February 11, 2015

Why to search for $\Lambda_c \rightarrow p \mu^+ \mu^-$?

- Decay of $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$ is a FCNC.
- Extremely suppressed in SM due to GIM mechanism.
- We will use the experience from $\tau \rightarrow p\mu\mu$.

 $\mathcal{B}(\Lambda_c^+ \to p \mu^- \mu^+) < 4.4 \times 10^{-5}$ 90% CL arXiv:1107.4465

We should easily beat Babar.

Preliminary selection

Stripping:

- PID(μ) > -5, PID(p) > 10
- IPCHi2 > 9, PID(μ K) > 0, GHOST < 0.3, PID(p) > 10, Pt > 300
- $\Delta m < 150 MeV$
- $c au > 100 \mu m$
- IPChi2 < 225

Additional:

Blind region
 |m(pµµ) - 2286.46| < 40MeV.</p>

• ϕ , ω veto.

Follow the strategy of τ analysis:

- Take prompt Λ_c , separate approach to SL.
- Loose cut preselection.
- Train MVA on MC prompt signal and recalibrate on data.
- Calibrate on date.
- Normalize to $\Lambda_c^+ \to pK^-\pi^+$, $\Lambda_c^+ \to p\pi^-\pi^+$ or $\Lambda_c \to p\phi(\mu\mu)$.
- Optimise the binning in MVA.
- CLs method for limit.

• We have 3 candidates for normalization channel.

1
$$\Lambda_c \rightarrow p\phi(\mu\mu), BR = (2.4 \pm 0.8) \times 10^{-7}$$

2 $\Lambda_c^+ \rightarrow pK^-\pi^+, BR = (5.0 \pm 1.3) \times 10^{-2}$
3 $\Lambda_c^+ \rightarrow p\pi^-\pi^+, BR = (3.5 \pm 2.0) \times 10^{-3}$

From above list $\Lambda_c \rightarrow p\phi(\mu\mu)$ is a perfect candidate for normalization. However Br is a bit low.

Optimising the selection

- Last time for studies we used BDT that was trained on the fly.
- Now a student produced a new optimised BDT
- I include his thesis as attachment to this presentation.

Comments about the BDT

- From historical reasons we are training this classifier on MC vs MC
- Problematic part is that we have limited MC background sample.
- We have how ever the opposite sign (OS) channel: $\Lambda^+_c \to \overline{p} \mu^+ \mu^+$
- The obvious idea was to use this as an background extrapolation and use it for training and optimisation.

Differences between SS and opposite sign data

Marcin Chrząszcz (UZH)

Normalization channel

- $\mathcal{O}(500)$ events in pour dataset.
- Can be used for normalization!
- With the new BDT we also see small peak of ω
- Will veto that.

Possible background

Resonance	$\mathcal{B}(\Lambda_c o pX)$	$\mathcal{B}(X o \mu \mu)$
η	UNKNOWN	$(5.8\pm 0.6) imes 10^{-6}$
$ ho^{0}$	UNKNOWN	$(4.55\pm0.28) imes10^{-5}$
ω	UNKNOWN	$(9.1 \pm 3.0) imes 10^{-5}$
f(980)	$(2.8 \pm 1.9) imes 10^{-3}$	UNKNOWN
ϕ	$(8.2 \pm 2.7) imes 10^{-4}$	$(2.89\pm0.19) imes10^{-4}$
Resonance	$\mathcal{B}(\Lambda_c o pX)$	$\mathcal{B}(X o \mu \mu \gamma)$
η	UNKNOWN	$(3.1\pm0.4) imes10^{-4}$

- Looks like we will have limits $\mathcal{O}(10^{-8})$
- We already see a new $\Lambda_c \to \omega p$ decay, needs separate analysis
- Normalization channel is still open, but we are converging towards $\Lambda_c^+\to p\pi^-\pi^+$
- We have one tight cut on the stripping (flight distance), we are considering several solutions.

