

2 Strategy

Why to search for $\Lambda_c \rightarrow \mathbf{p} \mu^+ \mu^-$?

- Decay of $\Lambda_c^+ \to p \mu^+ \mu^-$ is a FCNC.
- Extremely suppressed in SM due to GIM mechanism.
- We will use the experience from $\tau \rightarrow p \mu \mu$.

 ${\cal B}(\Lambda_c^+ o p \mu^- \mu^+) < 4.4 imes 10^{-5}$ 90% CL arXiv:1107.4465

We should easily beat Babar.

Follow the strategy of τ analysis:

- Take prompt Λ_c , separate approach to SL.
- Loose cut preselection.
- Train MVA on MC prompt signal and recalibrate on data.
- Calibrate on date.
- Normalize to $\Lambda_c^+ \to pK^-\pi^+$, $\Lambda_c^+ \to p\pi^-\pi^+$ or $\Lambda_c \to p\phi(\mu\mu)$.
- Optimise the binning in MVA.
- CLs method for limit.

Normalization channel

• We have 3 candidates for normalization channel.

1
$$\Lambda_c \to p\phi(\mu\mu), BR = (2.4 \pm 0.8) \times 10^{-7}$$

2 $\Lambda_c^+ \to pK^-\pi^+, BR = (5.0 \pm 1.3) \times 10^{-2}$
3 $\Lambda_c^+ \to p\pi^-\pi^+, BR = (3.5 \pm 2.0) \times 10^{-3}$

From above list $\Lambda_c \rightarrow p\phi(\mu\mu)$ is a perfect candidate for normalization. However Br is a bit low.

First look in data I

- With some PID and vertex cuts we can see our Λ_c → pφ(μμ)
- Back of the envelope calculations predict we should have 400 of those events in 3fb⁻¹
- A bit small for normalization.

Possible background

Resonance	$\mathcal{B}(\Lambda_{c} o ho X)$	$\mathcal{B}(X o \mu \mu)$
η	UNKNOWN	$(5.8\pm 0.6) imes 10^{-6}$
$ ho^{0}$	UNKNOWN	$(4.55\pm0.28) imes10^{-5}$
ω	UNKNOWN	$(9.1\pm 3.0) imes 10^{-5}$
f(980)	$(2.8 \pm 1.9) imes 10^{-3}$	UNKNOWN
ϕ	$(8.2 \pm 2.7) imes 10^{-4}$	$(2.89\pm0.19) imes10^{-4}$
Resonance	$\mathcal{B}(\Lambda_{c} o ho X)$	$\mathcal{B}(X o \mu \mu \gamma)$
η	UNKNOWN	$(3.1\pm0.4) imes10^{-4}$

First look in data II

- We also have looked at dimuon spectrum.
- Clearly ϕ , η , ω visible.
- We also see in data $\Lambda_c \rightarrow \omega(\mu\mu)p$.

Preliminary selection

Stripping:

- PID(μ)>-5, PID(p) >10
- IPCHi2>9, PID(μ K)>0, GHOST<0.3, PID(p)>10, Pt>300
- cτ > 100μm
- IPChi2 < 225

Additional:

Blind region
 |m(pµµ) - 2286.46| < 20MeV.

• ϕ , ω veto.

Preliminary TMVA

- Variables adopted form $\tau \rightarrow 3\mu$ (see Marta's talk).
- In the future we will use Blending for the classifiers.
- Already thanks to this BDTG we can pick up $\Lambda_c \rightarrow \omega(\mu\mu)$ p.

- Looks like we will have limits $\mathcal{O}(10^{-7})$ $\mathcal{O}(10^{-8})$
- We already see a new $\Lambda_c \rightarrow \omega p$ decay!
- Normalization channel is still open, but we are converging towards $\Lambda_{\it c}^+ \to p \pi^- \pi^+$
- We have one tight cut on the stripping (flight distance), we are considering several solutions.

