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Motivation

Likelihood(LL) fits even though widely used suffer from couple of
draw backs:

1. In case of small number events LL fits suffer from convergence
problems. This behaviour is well known and was observed
several times in toys for B→ K∗µµ.

2. LL can exhibit a bias when underlying physics model is not
well known, incomplete or mismodeled.

3. The LL have problems converging when parameters of the
p.d.f. are close to their physical boundaries.

4. Accessing uncertainty in LL fits sometimes requires application
of computationally expensive Feldman-Cousins method.
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Method of Moments

MoM addresses the above
problems:

Advantages of MoM
I Probability distribution

function rapidity converges
towards the Gaussian
distribution.

I MoM gives an unbias result
even with small data sample.

I Insensitive to large class of
remodelling of physics
models.

I Is completely insensitive to
boundary problems.
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Method of Moments

MoM addresses the above
problems:

Advantages of MoM
I ”For each observable, the

mean value can be
determined independently
from all other observables.

I Uncertainly follows perfectly
1/
√
N scaling, where N is

number of signal events.
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Method of Moments

MoM addresses the above
problems: Drawback:

Advantages of MoM
I ”For each observable, the

mean value can be
determined independently
from all other observables.

I Uncertainly follows perfectly
1/
√
N scaling, where N is

number of signal events.

Advantages of MoM
I Estimated uncertainty in

MoM is larger then the
ones from LL.
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Introduction to MoM

Let us a define a probability density function p.d.f. of a decay:

P(~ν, ~ϑ) ≡
∑
i

Si (~ν)× fi (~ϑ) (1)

Let’s assume further that there exist a dual basis: {fi (~ϑ)}, {f̃i (~ϑ)}
that the orthogonality relation is valid:∫

Ω
d~ϑ f̃i (~ϑ)fj(~ϑ) = δij (2)

Since we want to use MoM to extract angular observables it’s
normal to work with Legendre polynomials. In this case we can find
self-dual basis:

∀i f̃i = fi , (3)

just by applying the ansatz: f̃i =
∑
i aij fj .
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Determination of angular observables

Thanks to the orthonormality relation Eq. 2 one can calculate the
Si (~ν) just by doing the integration:

Si (~ν) =
∫

Ω
d~ϑP(~ν, ~ϑ)f̃i (~ϑ) (4)

We also need to integrate out the ~ν dependence:

〈Si 〉 =
∫

Θ
d~ν
∫

Ω
d~ϑP(~ν, ~ϑ)f̃i (~ϑ) (5)

MoM is basically performing integration in Eq. 5 using MC
method:

E [Si ]→ Ê [Si ] =
1
N

N∑
k=1

f̃ (xk)
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Uncertainty estimation

MoM provides also a very fast and easy way of estimating the
statistical uncertainty:

σ(Si ) =

√√√√ 1
N − 1

N∑
k=1

(f̃i (xk)− Ŝi )2 (6)

and the covariance:

Cov[Si , Sj ] =
1
N − 1

N∑
k=1

[Ŝi − f̃i (xk)][Ŝj − f̃j(xk)] (7)
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Partial Waves mismodeling

I Let us consider a decay of
B→ P1P2µ−µ+.

I In terms of angular p.d.f. is expressed in
terms of partial-wave expansion.

I For B→ Kπµ−µ+ system, S,P,D waves
have been studied.

I The muon system of this kind of decays has a fixed angular
dependence in terms of ϑ1 (lepton helicity angle) and ϑ3
(azimuthal angle).

I The hadron system can have arbitrary large angular
momentum.
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Partial Waves mismodeling

I One can write the p.d.f. separating the
hadronic system:

P(cosϑ1, cosϑ2, ϑ3) = (8)∑
i

Si (~ν, cosϑ2)fi (cosϑ1, ϑ3)

I Si (~ν, cosϑ2) can be further expend in terms of Legendre
polynomials p|m|l (cosϑ2):

Si (~ν, cosϑ2) =
inf∑
l=0

Sk,l(~ν)p
|m|
l (cosϑ2) (9)

I Experimentally the Sk,l are easily accessible, but there is a
theoretical difficulty as one would need to sum over infinite number
of partial waves.
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Detector effects

I Since our detectors are not a
perfect devices the angular
distribution observed by them are
not the distributions that the
physics model creates.
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I To take into account the acceptance effects one needs to
simulate the a large sample of MC events.

I Try to figure out the efficiency function.
I Number of possibilities.
I Then you can just weight events:

Ê [Si ] =
1∑N
k=1 wk

N∑
k=1

wk f̃ (xk), wk =
1

ε(xk)
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Unfolding matrix

In general one can write the distribution of events after the
detector effects:

PDet(xd) = N
∫ ∫
dxt PPhys(xt)E (xd |xt), (10)

where N−1 =
∫ ∫
dxt dxd PPhys(xt)E (xd |xt) and E (xd |xt) denotes

the efficiency ε(xt) and resolution of the detector R(xd |xt):

E (xd |xt) = ε(xt)R(xd |xt) (11)

One can define the raw moments:

Q(m)
i =

∫ ∫
dxt dxd f̃i (xd)P

(m)(xt)E (xd |xt) (12)

Mij =

2Q(0)
i j = 0 ,

2
(
Q(j)
i − Q

(0)
i

)
j 6= 0 ,

(13)

Once we measured the moments Q in data we can invert Eq. 11

and get the ~S : ~̂S = M−1 ~̂Q.
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Toy Validation

I All the statistics properties of
MoM have been tested in numbers
of TOY MC.

I As long as you have ∼ 30 events
your pulls are perfectly gaussian.

I Uncertainty scales with α√
n ,

α = O(1).
I Never observed any boundary

problems.
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Correlation of MoM with Likelihood

I MoM is highly correlated with LL.
I Despite the correlation there can

be difference of the order of
statistical error.
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Conclusions

1. MoM viable alternative to LL fits.

2. Allows LHCb to go smaller q2 bins (get ready for 1 GeV2

soon!).

3. Alternative method of extracting the detector effects.

4. Method is universally applicable, as long as an orthonormal
basis for the p.d.f. exists.
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BACKUP
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LHCb detector

LHCb is a forward spectrometer:

I Excellent vertex resolution.

I Efficient trigger.

I High acceptance for τ and B.

I Great Particle ID
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