Lepton flavour and number violation measurements at LHCb

Marcin Chrząszcz^{1,2}

 1 University of Zurich, 2 Institute of Nuclear Physics, Krakow

August 13, 2014

2 Lepton Flavour Violation

3 B decays
•
$$B^- \rightarrow h^+ \ell^- \ell^-$$

• $B_{(s)} \rightarrow \ell_1^+ \ell_2^-$

LHCb detector

LHCb is a forward spectrometer:

- Excellent vertex resolution.
- Efficient trigger.
- High acceptance for τ and B.
- Great Particle ID

Lepton Flavour/Number Violation

Lepton Flavour Violation(LFV):

After μ^- was discovered it was natural to think of it as an excited ${\rm e}^-.$

- Expected: $B(\mu
 ightarrow {
 m e}\gamma) pprox 10^{-4}$
- Unless another ν, in intermediate vector boson loop, cancels.

I.I.Rabi:

"Who ordered that?"

- Up to this day charged LFV is being searched for in various decay modes.
- LFV was already found in neutrino sector.
- Lepton Number Violation (LNV)
 - Even with LFV, lepton number can be a conserved quantity.
 - Many NP models predict it violation(Majorana neutrinos)
 - Searched in so called Neutrinoless double β decays.

 $\nu_{\mu} = \nu_{e}$

LNV in bottom decays

- resonant production in accessible mass range
- rates depend on Majorana neutrino–lepton coupling |V_{µ4}| (e.g. arXiv:0901.3589)

•
$$m_4 = m_{\ell^-,\pi^+}$$

Diagram without mass restriction Cabbibo favoured for $B \rightarrow D$ Analogous to double β decay.

Virtual Majorana neutrinos

On-shell Majorana neutrinos

- $B^- \rightarrow \pi^+ \mu^- \mu^-$ searched with full data set $3 f b^{-1}$.
- Cut based analysis.
- Normalization channel $\mathsf{B}^+ \to \mathsf{J}/\psi(\mu\mu)\mathsf{K}^+$.
- Searches performed for two scenarios:
 - Short life-time neutrinos: $\tau_4 < 1 ps$
 - Long life-time neutrinos: $au_4 \in (1, 1000) ps$

On-shell Majorana neutrinos

• In absence of signal UL. were set.

•
$$Br(B^- \rightarrow \pi^+ \mu^- \mu^-)$$
 in range 10^{-9} .

• Limits also set for the coupling $|V_{\mu4}|^2$

$$\begin{array}{l} Br(B^- \to \pi^+ \mu^- \mu^-) = \\ \frac{G_f^4 f_B^2 f_\pi^2}{128\pi\hbar} \tau_B m_B^5 |V_{ub} V_{ud}|^2 |V_{\mu 4}|^4 (1 - \frac{m_4^2}{m_B^2}) \frac{m_4}{\Gamma_{N_4}} \end{array}$$

Summary on LNV in B decays

channel	limit		
$\mathcal{B}(B^- o \pi^+ e^- e^-)$	$< 2.3 imes 10^{-8}$	@90 % CL	🤹 a
${\cal B}({\sf B}^- ightarrow{\sf K}^+{\sf e}^-{\sf e}^-)$	$< 3.0 imes 10^{-8}$	@90 % CL	🤹 a
${\cal B}(B^- ightarrow K^{*+}e^-e^-)$	$< 2.8 imes 10^{-6}$	@90 % CL	ÖŞ b
$\mathcal{B}(B^- o ho^+ e^- e^-)$	$< 2.6 imes 10^{-6}$	@90 % CL	õð ^b
${\cal B}({\sf B}^- ightarrow{\sf D}^+{\sf e}^-{\sf e}^-)$	$< 2.6 imes 10^{-6}$	@90 % CL	<mark>æ</mark> c
${\cal B}({\sf B}^- ightarrow{\sf D}^+{\sf e}^-\mu^-)$	$< 1.8 imes 10^{-6}$	@90 % CL	æc
${\cal B}({\sf B}^- ightarrow{\sf K}^+\mu^-\mu^-)$	$< 5.4 imes 10^{-7}$	@95 % CL	Hitep d
${\cal B}({\sf B}^- ightarrow{\sf D}^+\mu^-\mu^-)$	$< 6.9 imes 10^{-7}$	@95 % CL	$\mu_{i}^{c} e$
$\mathcal{B}(B^- o D^{*+} \mu^- \mu^-)$	$< 2.4 imes 10^{-6}$	@95 % CL	$\mathcal{H}_{\mathcal{C}_{\mathcal{C}}^{\mathcal{C}}}^{\mathcal{C}}$
$\mathcal{B}(B^- \rightarrow D_s^+ \mu^- \mu^-)$	$< 5.8 imes 10^{-7}$	@95 % CL	$\mu_{i}^{c} e$
${\cal B}({\sf B}^- ightarrow{\sf D}^0\pi^-\mu^-\mu^-)$	$< 1.5 imes 10^{-6}$	@95 % CL	$\mathcal{H}_{\mathcal{C}_{\mathcal{C}}^{\mathcal{C}}}^{\mathcal{C}}$

^aBaBar,Phys. Rev. D **85**, 071103 (2012) ^bCLEO, Phys. Rev. D **65**, 111102 (2002) ^cBelle, Phys. Rev. D **84**, 071106(R), (2011) ^dLHCb, Phys. Rev. Lett. 108 101601 (2012) ^eLHCb,Phys. Rev. Lett. (112) 131802 (2014)

$|{f B}_{(s)} ightarrow {f e}^- \mu^+|$

- A separate physics interest is LFV B decays.
- Predicted by various NP models: lepto-quarks, SUSY, GUT.
- Analysis based on 1*fb*⁻¹ 2011 data.
- Analogous to our $B^0_s \rightarrow \mu\mu$ analysis(PRL 111 (2013) 101804)
 - Loose preselection based on topology and PID.
 - 2 Classifier trained on MC signal and $b\bar{b} \rightarrow \ell \ell X$
 - **③** Calibration channel: $B^{0}_{(s)} \rightarrow h^{+}h^{'-}$
 - (4) Normalization Channel: $B^0 \rightarrow K^+ \pi^-$
 - S CLs¹ method for limit extraction.

¹A.L.Read, The CLs technique, Journal of Physics G (2012)

Marcin Chrząszcz (UZH, IFJ)

Phys. Rev. Lett. 111, 141801 (2013) University of

$|\mathsf{B}_{(s)}^{} ightarrow\mathsf{e}^{-}\mu^{+}$

- Correction to MC and DATA discrepancies.
- Excellent proxy: $B^0_{(s)} \rightarrow hh'$.
- Fit each BDT bin for $B^0_{(s)} \rightarrow hh'$ and extract number of events.
- Correct MC efficiency for each bin.
- Electron Bremsstrahlung corrected on $J/\psi \rightarrow ee$.

$|{f B}_{(s)}^{} ightarrow {m \ell}_1^+ {m \ell}_2^-$ Implications

- LHCb limits two times better than previous ones from CDF².
- CDF implications to lepto-quarks mass³.
 - $m_{LQ}(B^0_s \to e\mu) > 47.8(44.9) TeV 90(95\%)$ @CL. • $m_{LQ}(B^0 \to e\mu) > 59.3(56.3) TeV 90(95\%)$ @CL.

LHCb limits:

• $m_{LQ}(\mathsf{B}^0_{\mathsf{s}} \to \mathsf{e}\mu) > 107(101) \, TeV \, 90(95\%)$ @CL.

• $m_{LQ}(B^0 \to e\mu) > 135(126) TeV$ 90(95%) @CL.

²Phys. Rev. Lett. 102 (2009) 201801

³Theoretical formula Phys. Rev. D 50 (1994) 6843

Marcin Chrząszcz (UZH, IFJ)

 $\rightarrow \mu\mu\mu$

- () In SM small ${\cal B}(au^- o \mu^- \mu^- \mu^+) \sim 10^{-50}$
- **2** NP can enhance \mathcal{B} .
- **③** Nature still hides $\tau^- \rightarrow \mu^- \mu^- \mu^+$ from us.
- Ourrent limits:

Experiment	90% CL limit
BaBar ⁴	$3.3 imes10^{-8}$
Belle ⁵	$2.1 imes10^{-8}$

• Can a hadron collider change the picture?

⁴Phys.Rev.D81:111101(R),2010 ⁵Phys.Lett.B687:139-143,2010

Marcin Chrząszcz (UZH, IFJ)

LFV & LNV at LHCb

 τ

13/19

 ν_i

Z

μ

${\mathcal B}$ factories

- **1** signal: $e^+e^- \rightarrow \tau^+\tau^-$
- 2 $1.2 \times 10^9 \tau$ pairs
- 3 Calculate the thrust axis
- Tag the other au
- Small cross section 0.919nb

LHCb, (7*TeV*, 2011 data)

- Inclusive τ cross section: 79.5 \pm 8.3 µb.
- **2** $8 \times 10^{10} \tau$ produced.
- 3 Dominant contribution: $D_s \rightarrow \tau \nu_{\tau}$ (78%)
- No partial tag possible.

Strategy

- Loose cut based selection
- Classification in 3D space:
 - invariant mass
 - decay topology (multivariate)
 - particle identification (multivariate)
- Classifier trained on simulation
- Calibration with control channel
- Normalization with ${\sf D}_{\sf s}
 ightarrow \phi(\mu\mu)\pi$
- CLs method to extract the result

Signal & Calibration & Background channel:

Signal likelihoods

particle identification

- hits in muon chambers
- energy in calorimeters
 - compatible with MIP
- RICH response

Calibration

 ${\rm J}/\psi \to \mu^+ \mu^-$

3 body decay likelihood

- vertex properties
 - vertex fit, pointing
- track quality
- isolation

Calibration

$$\mathsf{D}_{\mathsf{s}} \to \phi \pi$$

combined signal distribution

- events distributed over 25 likelihood bins
- background estimate from mass side-bands

Signal efficiency in 3-BODY BDT vs PID BDT plane.

Extracted upper limit

1 fb⁻¹ PLB 724 (2013) 36-45

- Analyses of LFV and LNV processes are going very well in LHCb
- We already have a number of best limits in our hands.
- Stay tuned, more new results coming up soon.

