Lepton Flavour Violation at LHCb

 $\begin{array}{l} \mbox{Marcin Chrząszcz}^{1,2} \\ \mbox{on behalf of the LHCb collaboration} \end{array}$

 1 University of Zurich, 2 Institute of Nuclear Physics, Krakow

International Workshop on Tau Lepton Physics 2014, Aachen, Germany

September 8, 2014

Outline

- 1 LHCb detector
- **2** Lepton Flavour Violation status
- **3** Selection
- 4 Multivariate technique
- **5** Normalisation
- 6 Backgrounds
- Expected limit
- **8** Model dependence
- **9** Unblinded results

LHCb detector

LHCb is a forward spectrometer:

- Excellent vertex resolution.
- Efficient trigger.
- High acceptance for τ and B.
- Great Particle ID

Lepton Flavour/Number Violation

Lepton Flavour Violation(LFV):

After μ^- was discovered (1936) it was natural to think of it as an excited e⁻.

- Expected: $B(\mu
 ightarrow {
 m e}\gamma) pprox 10^{-4}$
- Unless another ν, in intermediate vector boson loop, cancels.

I.I.Rabi:

"Who ordered that?"

- Up to this day charged LFV is being searched for in various decay modes.
- LFV was already found in neutrino sector (oscillations).

Lepton Number Violation (LNV) (see J. Harrison talk)

- Even with LFV, lepton number can be a conserved quantity.
- Many NP models predict it violation(Majorana neutrinos)
- Searched in so called Neutrinoless double β decays.

Status of $\tau \rightarrow \mu \mu \mu$ in Tau 2012

- Blind analysis.
- Loose selection.
- Multivariate classification in: mass, PID, "geometry/topology".
- Binning optimisation.
- Consider 2012(8 TeV) and 2011(7 TeV) data separately.
- Relative normalisation $(D_s \rightarrow \phi(\mu\mu)\pi)$.
- Invariant mass fit for expected background in each likelihood bin: fit in $|m m_{\tau}| > 30$ MeV.
- "middle sidebands" for classifier evaluation and tests: (20 MeV $< |m m_{\tau}| < 30$ MeV).
- CLs for limit calculation.

au production

• τ 's in LHCb come from five main sources:

Mode	7 TeV	8 TeV
Prompt $D_s \rightarrow \tau$	$71.1\pm3.0\%$	$72.4\pm2.7\%$
Prompt $D^+ ightarrow au$	$4.1\pm0.8\%$	$4.2\pm0.7~\%$
Non-prompt $D_s \rightarrow \tau$	$9.0\pm2.0\%$	$8.5\pm1.7~\%$
Non-prompt $D^+ \rightarrow \tau$	$0.18\pm0.04\%$	$0.17\pm0.04\%$
$X_{ m b} ightarrow au$	$15.5\pm2.7\%$	$14.7\pm2.3\%$

${\cal B}({\mathsf D}^+ o au)$

- There is no measurement of $\mathcal{B}(\mathsf{D}^+ \to \tau)$.
- One can calculate it from: $\mathcal{B}(D^+ \rightarrow \mu \nu_{\mu}) +$ helicity suppression + phase space.
- hep-ex:0604043.

•
$$\mathcal{B}(\mathsf{D}^+ o au
u_{ au}) = (1.0 \pm 0.1) imes 10^{-3}.$$

- LHCb uses complicated trigger¹
- $\mathcal{O}(100)$ trigger lines.
- Lines change with data taking.
- Optimized choice of triggers based on $\frac{s}{\sqrt{b}}$ FOM.
- Evaluated different triggers used in 2012 data taking.
- Found negligible differences in trigger efficiencies.

¹arxiv 1211.3055

Marcin Chrząszcz (UZH, IFJ)

Geometric likelihood

- As mentioned in LHCb we have different production sources of τ 's.
- Each source has different detector response signature.
- To maximise our performance we trained classifiers for each of the τ sources using:
 - Kinematic properties of τ candidate.
 - Geometric properties of τ candidate, like pointing angle, DOCA, Vertex χ^2 , flight distance.
 - Isolations, for vertex and individual tracks.
- After training the individual classifiers one that combines all this information in a single classifier on mixed sample of τ's.
- This technique is known as Blending or
- Using this approach we gain 6% sensitivity!

Performance of Blend classifier

• Classifier prefers τ 's from prompt D_s, the dominant channel.

Calibration

- Assume all differences between $\tau \rightarrow \mu \mu \mu$ and $D_s \rightarrow \phi \pi$ come from kinematics (mass, resonance, decay time), which is correct in MC.
- Get correction $D_s \rightsquigarrow \tau$ from MC.
- Apply corrections to $D_s \rightarrow \phi \pi$ on data.

validation

done for 2011 analysis, treating smeared MC as data

• $D_s \rightarrow \phi \pi$ well modelled in MC.

PID calibration

Phenomenological treatment

- correlations are small in $D_s \rightarrow \phi \pi$ data and MC: ε (cut on one muon)² = ε (cut on two muons)
- $\Rightarrow \text{ use } c^3 = (\varepsilon(\text{cut and fit})/\varepsilon(\text{PIDCalib}))^3 \text{ as correction to} \\ \text{PIDCalib for } \tau \to \mu \mu \mu$
 - assign error of 0.02 for c.
 - Many cross-checks done.
 - Everything works fine.

University of

Zurich

Binning optimisation

- How to optimise the binning in two classifiers?
- 1 fb^{-1} CONF note: two one-dimensional optimisations as in $B^0_{\rm s} \to \mu \mu.$
- 1 fb⁻¹ PAPER: iterative loop of one-dimensional optimisations optimising one classifier on the sensitive range of the other classifier.
- Now: optimise two-dimensions (optimise bin boundaries in both dimensions simultaneously).
- Unchanged: don't use lowest likelihood bins (reflection backgrounds, no sensitivity gain).

Impact of new binning optimisation

- Removal of tiny bins which contribute negligible sensitivity.
- Colour: limit obtained, using only this particular bin.
- Number: rank of that bin (1=best sensitivity bin).

Bin sensitivity (2011 data)

valhist

Mass shape

- Double-Gaussian with fixed fraction (70% inner Gaussian).
- Fix fraction to ease calibration.
- Correct mass by MC:

$$\sigma_{\textit{data}}^{\tau} = \frac{\sigma_{\textit{MC}}^{'}}{\sigma_{\textit{MC}}^{\mathsf{D}_{\mathsf{s}}}} \times \sigma_{\textit{data}}^{\mathsf{D}_{\mathsf{s}}}$$

Relative normalisation

$$\mathcal{B}(\tau \to \mu \mu \mu) = \frac{\mathcal{B}(\mathsf{D}_{\mathsf{s}} \to \phi \pi)}{\mathcal{B}(\mathsf{D}_{\mathsf{s}} \to \tau \nu_{\tau})} \times f_{\mathsf{D}_{\mathsf{s}}}^{\tau} \times \frac{\varepsilon_{\mathsf{norm}}}{\varepsilon_{\mathsf{sig}}} \times \frac{N_{\mathsf{sig}}}{N_{\mathsf{norm}}} = \alpha \times N_{\mathsf{sig}}$$

- \bullet where ε stands for trigger, reconstruction, selection,
- $f_{D_c}^{\tau}$ is the fraction of τ coming from D_s ,
- norm = normalisation channel $D_s \rightarrow \phi \pi$ i.e. (83 ± 3)% for 2012.

Normalisation in numbers I

	$7 { m TeV}$	8 TeV		
$\epsilon_{ m sig}{}^{ m GEN}(\%)$	8.989 ± 0.40	9.21 ± 0.35		
$\epsilon_{ ext{cal}}{}^{ ext{GEN}}(\%)$	11.19 ± 0.34	11.53 ± 0.32		
$\epsilon_{ m sig}^{ m REC, is Muon, SEL}$ (%)	9.927 ± 0.028	9.261 ± 0.023		
$\epsilon_{\mathrm{cal}}^{\mathrm{REC,isMuon,SEL}}(\%)$	7.187 ± 0.022	6.690 ± 0.022		
$rac{c_{cal}^{track}}{c_{sig}^{track}}$	$0.997 \pm 0.009 \pm 0.026$	$0.996 \pm 0.009 \pm 0.026$		
$\frac{c_{cal}^{\mu ID}}{c_{sig}^{\mu ID}}$	$0.9731 \pm 0.0031 \pm 0.0264$	$1.0071 \pm 0.0022 \pm 0.0204$		
c^{ϕ}	0.98 ± 0.01			
c^{τ}	1.032 ± 0.006	1.026 ± 0.006		
c^{trash}	1.89 ± 0.12	1.96 ± 0.12		
$\epsilon_{ m sig}^{ m TRIG}$ (%)	$35.52 \pm 0.14 \pm 0.14$	$39.3\pm1.7\pm2.0$		
$\epsilon_{ m cal}^{ m TRIG}$ (%)	$23.42 \pm 0.14 \pm 0.09$	$20.62 \pm 0.76 \pm 1.07$		

Normalisation in numbers II

	$7 { m TeV}$	$8 { m TeV}$	
$\mathcal{B}(D_{s} o \phi \pi)$	$(1.317\pm0.099) imes10^{-5}$		
$f_{D_s}^{ au}$	0.78 ± 0.04	0.80 ± 0.03	
$\mathcal{B}(D_{s} o au u_{ au})$	0.0561 ± 0.0024		
$\epsilon_{\rm cal}^{\rm REC\&SEL}/\epsilon_{\rm sig}^{\rm REC\&SEL}$	0.898 ± 0.060	0.912 ± 0.054	
$\epsilon_{\rm cal}$ $\epsilon_{\rm rad}$ $\epsilon_{\rm rad}$ $\epsilon_{\rm rad}$ $\epsilon_{\rm rad}$	0.6593 ± 0.0058	0.525 ± 0.040	
N _{cal}	$28,207\pm440$	$52,131\pm695$	
α α^{trash}		$ \begin{array}{c} (1.72\pm 0.23)\times 10^{-9} \\ (3.37\pm 0.50)\times 10^{-9} \end{array} $	

Misidentification 1

- Most dominant: $D^+ \rightarrow K\pi\pi$.
- Also seen $D^+ \rightarrow \pi \pi \pi$ and $D_s \rightarrow \pi \pi \pi$.
- Looked in all mass hypothesis combinations.

19/31

Marcin Chrząszcz (UZH, IFJ)

Misidentification 2

- Many tests were performed to be sure we are safe from $D_x \rightarrow 3h$.
- Tested both on MC and data.
- Referees also suggest looking into semileptonic decays.
- Our background is safely contained in "trash"² bins.

University of 7urich[™]

Dangerous backgrounds

- $\phi \rightarrow \mu \mu + X$: narrow veto on dimuon mass.
- $D_s \rightarrow \eta(\mu\mu\gamma)\mu\nu_\mu$: not so easy:
 - Modelled in CONF note.
 - Optimised veto in PAPER.
 - Both versions in the ANA note.
- Baseline: veto $m_{\mu^+\mu^-}$ < 450 MeV:
 - Fits better understood.
 - Sensitivity unchanged when removing veto.
 - Smaller uncertainty on expected background.

Remaining backgrounds

- Fit exponential to invariant mass spectrum in each likelihood bin.
- Don't use blinded region ($\pm 30 \mbox{ MeV}$).
- ightarrow Compatible results blinding only $\pm 20~{
 m MeV^3}$

Example of most sensitive regions in 2011 and 2012

³partially used in classifier development

Marcin Chrząszcz (UZH, IFJ)

- Consider nuisance parameters from background fit, signal pdf calibration, normalisation.
- Nuisance parameters due to τ production, normalization.
- Limit for combined 2011+2012 analysis.

Sensitivity

Model dependence

- η veto \Rightarrow our limit not constraining to New Physics with small $m_{\mu^+\mu^-}$.
- Model description in arXiv:0707.0988.
- 5 relevant Dalitz distributions: 2 four-point operators, 1 radiative operator, 2 interference terms.

Model dependence

- η veto \Rightarrow our limit not constraining to New Physics with small $m_{\mu^+\mu^-}$.
- Model description in arXiv:0707.0988.
- 5 relevant Dalitz distributions: 2 four-point operators, 1 radiative operator, 2 interference terms.
- With radiative distribution limit gets worse by a factor of 1.5 (dominantly from the η veto).
- The other four Dalitz distributions behave nicely (within 7 %).

" THERE came a day at summer's full Entirely for us I thought that such were for the saints, Where revelations be. "*a*

^aE.Dickinson

On Monday 4th of August we were given the permission to unblind.

Unblinding 2

- Unfortunately no big "revelations" were there.
- 2011 numbers:

ProbNNmu	M _{blend}	Estimated	Observed
0.4, 0.45	0.28, 0.32	3.172 ± 0.661	4
0.4, 0.45	0.32, 0.46	9.242 ± 1.129	6
0.4, 0.45	0.46, 0.54	2.894 ± 0.632	6
0.4, 0.45	0.54, 0.65	3.173 ± 0.661	4
0.4, 0.45	0.65, 0.80	3.637 ± 0.716	2
0.4, 0.45	0.80, 1.0	3.787 ± 0.802	3
0.45, 0.54	0.28, 0.32	4.223 ± 0.779	6
0.45, 0.54	0.32, 0.46	8.345 ± 1.077	10
0.45, 0.54	0.46, 0.54	2.317 ± 0.568	4
0.45, 0.54	0.54, 0.65	2.828 ± 0.632	8
0.45, 0.54	0.65, 0.80	2.718 ± 0.688	5
0.45, 0.54	0.80, 1.00	4.825 ± 0.900	7

ProbNNmu	M _{blend}	Estimated	Observed	
0.54, 0.63	0.28, 0.32	2.327 ± 0.584	6	
0.54, 0.63	0.32, 0.46	8.324 ± 1.077	8	
0.54, 0.63	0.46, 0.54	2.068 ± 0.534	1	
0.54, 0.63	0.54, 0.65	3.291 ± 0.675	1	
0.54, 0.63	0.65, 0.80	2.962 ± 0.646	4	
0.54, 0.63	0.80, 1.00	3.114 ± 0.687	3	
0.63, 0.75	0.28, 0.32	2.688 ± 0.616	1	
0.63, 0.75	0.32, 0.46	7.541 ± 1.023	5	
0.63, 0.75	0.46, 0.54	2.059 ± 0.534	3	
0.63, 0.75	0.54, 0.65	1.996 ± 0.549	5	
0.63, 0.75	0.65, 0.80	3.164 ± 0.661	2	
0.63, 0.75	0.80, 1.00	4.674 ± 0.836	2	
0.75, 1.0	0.28, 0.32	2.192 ± 0.551	2	
0.75, 1.0	0.32, 0.46	3.384 ± 0.755	5	
0.75, 1.0	0.46, 0.54	1.517 ± 0.457	3	
0.75, 1.0	0.54, 0.65	1.280 ± 0.469	1	
0.75, 1.0	0.65, 0.80	2.780 ± 0.645	1	
0.75, 1.0	0.80, 1.00	4.421 ± 0.833	7	

Unblinding 3

• Unfortunately no big "revelations" were either in 2012 data:

				ProbNNmu	M _{blend}	Estimated	Observed
				0.61, 0.71	0.26, 0.34	13.457 ± 1.366	7
				0.61, 0.71	0.34, 0.45	10.852 ± 1.23	11
ProbNNmu	M	Estimated	Observed	0.61, 0.71	0.45, 0.61	9.661 ± 1.18	12
0.4.0.54	0.26.0.24		20	0.61, 0.71	0.61, 0.7	3.346 ± 0.69	2
0.4, 0.54	0.20, 0.34	39.0 ± 2.3	33	0.61, 0.71	0.7, 0.83	4.600 ± 0.888	5
0.4, 0.54	0.34, 0.45	32.2 ± 2.1	34	0.61, 0.71	0.83, 0.94	4.091 ± 0.809	4
0.4, 0.54	0.45, 0.61	20.7 ± 2.0	20	0.61, 0.71	0.94, 1.0001	2.780 ± 0.680	1
0.4, 0.54	0.61, 0.7	9.72 ± 1.22	5 7	0.71, 0.8	0.26, 0.34	7.808 ± 1.067	6
0.4, 0.54	0.7, 0.83	11.38 ± 1.26		0.71, 0.8	0.34, 0.45	7.001 ± 0.985	8
0.4, 0.54	0.83, 0.94	7.34 ± 1.10	6	0.71.0.8	0.45, 0.61	6.170 ± 0.945	6
0.4, 0.54	0.94, 1.0001	5.98 ± 0.95	0	0.71.0.8	0.61.0.7	1.570 ± 0.556	2
0.54, 0.61	0.26, 0.34	13.6 ± 1.37	8	0.71.0.8	0.7.0.83	2.987 ± 0.717	0
0.54, 0.61	0.34, 0.45	12.1 ± 1.29	12	07108	0 83 0 94	3.929 ± 0.806	o l
0.54, 0.61	0.45, 0.61	8.32 ± 1.086	13	0 71 0 8	0.94 1.0001	3222 ± 0.676	1
0.54, 0.61	0.61, 0.7	2.595 ± 0.616	1	0810	0.26.0.34	5.123 ± 0.861	3
0.54, 0.61	0.7, 0.83	1.833 ± 0.601	5	0.8 1.0	0 34 0 45	4435 ± 0.792	6
0.54, 0.61	0.83, 0.94	2.929 ± 0.724	6	0.8 1.0	0.45 0.61	$3,802 \pm 0.784$	5
0.54, 0.61	0.94, 1.0001	2.693 ± 0.632	3	0.8 1 0	0.61.0.7	2.649 ± 0.676	2
				0.8 1 0	0.7 0.83	2.043 ± 0.070 3.053 ± 0.674	2
				0.0, 1.0	0.0,0.00	1.740 ± 0.674	2
				0.0, 1.0	0.03, 0.94	1.740 ± 0.043	2
				0.8, 1.0	0.83, 0.94 0.94, 1.0001	$1.740 \pm 0.543 \\ 3.361 \pm 0.702$	2 3

Limits(PHSP): Observed(Expected) 4.6 (5.0) \times 10⁻⁸ at 90% CL 5.6 (6.1) \times 10⁻⁸ at 95% CL

$$\begin{array}{c|c} \text{Dalitz distribution} & x10^{-8} \\ \varrho_V^{(LL)(LL)} & 4.2 (4.7) \\ \varrho_V^{(LL)(RR)} & 4.1 (4.6) \\ \varrho_{rad}^{(R)} & 6.8 (7.6) \\ \varrho_{mix}^{(LL)(LL)} & 4.4 (5.1) \\ \varrho_{mix}^{(LL)(RR)} & 4.6 (5.0) \end{array}$$

- We didn't find NP (yet).
- Limits set with full LHCb dataset.
- We wait for the Run 2 dataset!

- We would like to thank our referees for very friendly, thorough and fruitful review.
- With this presentation we ask collaboration for approval.

