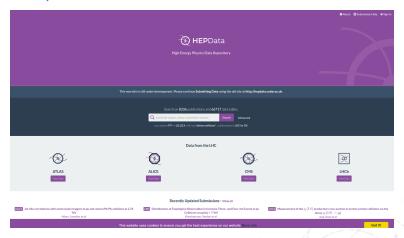
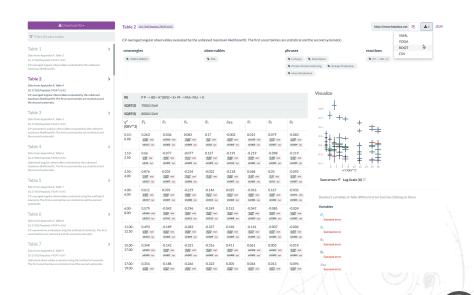
Submitting results to HepData


Marcin Chrząszcz mchrzasz@cern.ch


With M.Bettler, A.Puig, A. Grecu

Zurich meeting, CERN November 24, 2016

HepData portal

Why do we need HepData?

The challenge

- \Rightarrow The $B \to K^* \mu \mu$ analysis has produced over 80 tables with results and correlation tables...
- ⇒ Theorists need all the correlation tables to make the global fit.
- \Rightarrow Reading the numbers form our tex files from all the theories groups is not really a nice way to do it:

⇒ Many thanks for Alex Grecu for help understanding how the HepData works!

Automatic scripts

⇒ Coding the 80 tables by hand without making a typo is impossible!

	$F_{\rm L}$	S_3	S_4	S_5	$A_{\rm FB}$	S_7	S_8	S_9
$F_{\rm L}$	1.00	0.06	0.00	0.03	0.04	-0.02	0.07	0.08
S_3		1.00	0.01	0.10	-0.00	-0.07	-0.01	-0.03
S_4			1.00	0.08	0.11	-0.00	0.07	0.02
S_5				1.00	0.05	-0.01	0.00	0.04
$A_{\rm FB}$					1.00	0.03	-0.07	0.02
S_7						1.00	0.01	0.11
S_8 S_9							1.00	0.02
S_9								1.00

```
*dataset:
*location: Appendix C
*dscomment: Likelihood correlation matrix $0.1 < q^2 < 0.98~{\rm GeV}^2/c^4$.
*qual: Sq^2S = M**2(<MU+ MU->) IN GEV**2: 0.1 TO 0.98
*reackev: P P --> B0 + X
*obskey: CORR
*qual: RE : P P --> B0 < K*(892) < K+ PI- > MU+ MU- > X
*qual: SQRT(S) IN GEV : 7000.0
*qual: SQRT(S) IN GEV : 8000.0
*yheader: $F_{\rm L}$ : $S_3$ : $S_4$ : $S_5$ : $A_{\rm FB}$ : $S_7$ : $S_8$ : $S_9$
*xheader: CORR
*data: x : y : y : y : y : y : y : y : y
SF {\rm L}S; 1.00; 0.06; 0.00; 0.03; 0.04; -0.02; 0.07; 0.08;
$5_3$; 0.06; 1.00; 0.01; 0.10; 0.00; -0.07; -0.01; -0.03;
$$ 4$; 0.00; 0.01; 1.00; 0.08; 0.11; 0.00; 0.07; 0.02;
$5 5$: 0.03: 0.10: 0.08: 1.00: 0.05: -0.01: 0.00: 0.04:
$A {\rm FB}$; 0.04; 0.00; 0.11; 0.05; 1.00; 0.03; -0.07; 0.02;
SS 7S: -0.02: -0.07: 0.00: -0.01: 0.03: 1.00: 0.01: 0.11:
$5_8$; 0.07; -0.01; 0.07; 0.00; -0.07; 0.01; 1.00; 0.02;
$5_9$; 0.08; -0.03; 0.02; 0.04; 0.02; 0.11; 0.02; 1.00;
*dataend:
```

- ⇒ To make sure this is done correctly python scripts were written.
- ⇒ The can with some minor modifications can be re-used for other applications.
- ⇒ HepData is an extremely useful portal.
- ⇒ Let's make our results "One click away" for theorists!

Backup

Example:

- \Rightarrow The scripts I show here are not 100~% plug and play.
- ⇒ Each table in latex is a bit different and needs some special modification.
- But to modify the scripts and apply them to your case should not be much work.

 $^{7}/_{5}$

Example:

Table 4: CP-averaged angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and the second systematic.

	$0.10 < q^2 < 0.98 \text{GeV}^2/c^4$	$1.1 < q^2 < 2.5 \mathrm{GeV^2\!/}c^4$	$2.5 < q^2 < 4.0 \mathrm{GeV^2\!/c^4}$
$F_{\rm L}$	$0.263^{+0.045}_{-0.044} \pm 0.017$	$0.660^{+0.083}_{-0.077} \pm 0.022$	$0.876^{+0.109}_{-0.097} \pm 0.017$
S_3	$-0.036^{+0.063}_{-0.063}\pm0.005$	$-0.077^{+0.087}_{-0.105} \pm 0.005$	$0.035^{+0.098}_{-0.089} \pm 0.007$
S_4	$0.082^{+0.068}_{-0.069} \pm 0.009$	$-0.077^{+0.111}_{-0.113} \pm 0.005$	$-0.234^{+0.127}_{-0.144} \pm 0.006$
S_5	$0.170^{+0.059}_{-0.058} \pm 0.018$	$0.137^{+0.099}_{-0.094} \pm 0.009$	$-0.022^{+0.110}_{-0.103} \pm 0.008$
A_{FB}	$-0.003^{+0.058}_{-0.057} \pm 0.009$	$-0.191^{+0.068}_{-0.080}\pm0.012$	$-0.118^{+0.082}_{-0.090}\pm0.007$
S_7	$0.015^{+0.059}_{-0.059} \pm 0.006$	$-0.219^{+0.094}_{-0.104} \pm 0.004$	$0.068^{+0.120}_{-0.112} \pm 0.005$
S_8	$0.079^{+0.076}_{-0.075}\pm0.007$	$-0.098^{+0.108}_{-0.123}\pm0.005$	$0.030^{+0.129}_{-0.131} \pm 0.006$
S_9	$-0.083^{+0.058}_{-0.057} \pm 0.004$	$-0.119^{+0.087}_{-0.104} \pm 0.005$	$-0.092^{+0.105}_{-0.125} \pm 0.007$
	$4.0 < q^2 < 6.0 \text{GeV}^2/c^4$	$6.0 < q^2 < 8.0 \text{GeV}^2/c^4$	$11.0 < q^2 < 12.5 \mathrm{GeV^2/}c^4$
$F_{ m L}$	$0.611^{+0.052}_{-0.053} \pm 0.017$	$0.579^{+0.046}_{-0.046} \pm 0.015$	$0.493^{+0.049}_{-0.047} \pm 0.013$
S_3	$0.035^{+0.069}_{-0.068} \pm 0.007$	$-0.042^{+0.058}_{-0.059} \pm 0.011$	$-0.189^{+0.054}_{-0.058}\pm0.005$
S_4	$-0.219^{+0.086}_{-0.084}\pm0.008$	$-0.296^{+0.063}_{-0.067}\pm0.011$	$-0.283^{+0.084}_{-0.095}\pm0.009$
S_5	$-0.146^{+0.077}_{-0.078}\pm0.011$	$-0.249^{+0.059}_{-0.060} \pm 0.012$	$-0.327^{+0.076}_{-0.079} \pm 0.009$
A_{FB}	$0.025^{+0.051}_{-0.052} \pm 0.004$	$0.152^{+0.041}_{-0.040} \pm 0.008$	$0.318^{+0.044}_{-0.040} \pm 0.009$
S_7	$-0.016^{+0.081}_{-0.080}\pm0.004$	$-0.047^{+0.068}_{-0.066}\pm0.003$	$-0.141^{+0.072}_{-0.074} \pm 0.005$
S_8	$0.167^{+0.094}_{-0.091} \pm 0.004$	$-0.085^{+0.072}_{-0.070} \pm 0.006$	$-0.007^{+0.070}_{-0.072} \pm 0.005$
S_9	$-0.032^{+0.071}_{-0.071} \pm 0.004$	$-0.024^{+0.059}_{-0.060}\pm0.005$	$-0.004^{+0.070}_{-0.073} \pm 0.006$
	$15.0 < q^2 < 17.0 \mathrm{GeV^2/c^4}$	$17.0 < q^2 < 19.0 \text{GeV}^2/c^4$	
$F_{ m L}$	$0.349^{+0.039}_{-0.039} \pm 0.009$	$0.354^{+0.049}_{-0.048} \pm 0.025$	
S_3	$-0.142^{+0.044}_{-0.049} \pm 0.007$	$-0.188^{+0.074}_{-0.084} \pm 0.017$	
S_4	$-0.321^{+0.055}_{-0.074} \pm 0.007$	$-0.266^{+0.063}_{-0.072}\pm0.010$	
S_5	$-0.316^{+0.051}_{-0.057} \pm 0.009$	$-0.323^{+0.063}_{-0.072} \pm 0.009$	
A_{FB}	$0.411^{+0.041}_{-0.037} \pm 0.008$	$0.305^{+0.049}_{-0.048} \pm 0.013$	
S_7	$0.061^{+0.058}_{-0.058} \pm 0.005$	$0.044^{+0.073}_{-0.072} \pm 0.013$	
S_8	$0.003^{+0.061}_{-0.061} \pm 0.003$	$0.013^{+0.071}_{-0.070} \pm 0.005$	
S_9	$-0.019^{+0.054}_{-0.056} \pm 0.004$	$-0.094^{+0.065}_{-0.067} \pm 0.004$	

Example:

RE	P P -> B0 < K*(892) < K* PI- 7000.0 GeV	P -> 80 < K'(892) < K* P* > MU+ MU-> X										
SQRT(S)	7000.0 GeV 8000.0 GeV											
	0000.0 GeV											
q ² IN GEV™2	$F_{\rm L}$	S_3	S_4	S_5	$A_{\rm FB}$	S_7	S_8	S_9				
0.10 -	0.263 +0.045,-0.044 (stat)	-0.036 ± 0.063 (stat)	0.082 +0.068,-0.069 (stat)	0.170 +0.059,-0.058 (stat)	-0.003 +0.058,-0.057 (stat)	0.015 ± 0.059 (stat)	0.079 +0.076,-0.075 (stat)	-0.083 +0.068,-0.067 (stat)				
0.98	± 0.017 (sys)	± 0.005 (sys)	± 0.009 (sys)	± 0.018 (sys)	± 0.009 (sys)	± 0.006 (sys)	± 0.007 (sys)	± 0.004 (sys)				
1.1 - 2.5	0.660 +0.083,-0.077 (stat)	-0.077 +0.087,-0.105 (stat)	-0.077 +0.111,-0.113 (stat)	0.137 +0.099,-0.094 (stat)	-0.191 +0.068,-0.080 (stat)	-0.219 +0.094,-0.104 (stat)	-0.098 +0.108,-0.123 (stat)	-0.119 +0.087,-0.104 (stat)				
	± 0.022 (sys)	± 0.005 (sys)	± 0.005 (sys)	± 0.009 (sys)	± 0.012 (sys)	± 0.004 (sys)	± 0.005 (sys)	± 0.005 (sys)				
2.5 - 4.0	0.876 +0.109,-0.097 (stat)	0.035 +0.098,-0.089 (stat)	-0.234 +0.127,-0.144 (stat)	-0.022 +0.110,-0.103 (stat)	-0.118 +0.082,-0.090 (stat)	0.068 +0.120,-0.112 (stat)	0.030 +0.129,-0.131 (stat)	-0.092 +0.105,-0.125 (stat)				
	± 0.017 (sys)	± 0.007 (sys)	± 0.006 (sys)	± 0.000 (sys)	± 0.007 (sys)	± 0.005 (sys)	± 0.006 (sys)	± 0.007 (sys)				
4.0 - 6.0	0.611 +0.052,-0.053 (stat)	0.035 +0.069,-0.068 (stat)	-0.219 +0.086,-0.084 (stat)	-0.146 +0.077,-0.078 (stat)	0.025 +0.051,-0.052 (stat)	-0.016 +0.081,-0.080 (stat)	0.167 +0.094,-0.091 (stat)	-0.032 ± 0.071 (stat)				
	± 0.017 (sys)	± 0.007 (sys)	± 0.008 (sys)	± 0.011 (sys)	± 0.004 (sys)	± 0.004 (sys)	± 0.004 (sys)	± 0.004 (sys)				
6.0 - 8.0	0.579 ± 0.046 (stat)	-0.042 +0.058,-0.059 (stat)	-0.296 +0.063,-0.067 (stat)	-0.249 +0.059,-0.060 (stat)	0.152 +0.041,-0.040 (stat)	-0.047 +0.068,-0.066 (stat)	-0.085 +0.072,-0.070 (stat)	-0.024 +0.059,-0.060 (stat)				
	± 0.015 (sys)	± 0.011 (sys)	± 0.011 (sys)	± 0.012 (sys)	± 0.008 (sys)	± 0.003 (sys)	± 0.006 (sys)	± 0.005 (sys)				
11.0 -	0.493 +0.049,-0.047 (stat)	-0.189 +0.054,-0.058 (stat)	-0.283 +0.084,-0.095 (stat)	-0.327 +0.076,-0.079 (stat)	0.318 +0.044,-0.040 (stat)	-0.141 +0.072,-0.074 (stat)	-0.007 +0.070,-0.072 (stat)	-0.004 +0.070,-0.073 (stat)				
12.5	± 0.013 (sys)	± 0.005 (sys)	± 0.009 (sys)	± 0.009 (sys)	± 0.009 (sys)	± 0.005 (sys)	± 0.005 (sys)	± 0.006 (sys)				
15.0 -	0.349 ± 0.039 (stat)	-0.142 +0.044,-0.049 (stat)	-0.321 +0.055,-0.074 (stat)	-0.316 +0.051,-0.057 (stat)	0.411 +0.041,-0.037 (stat)	0.061 ± 0.058 (stat)	0.003 ± 0.061 (stat)	-0.019 +0.054,-0.056 (stat)				
17.0	± 0.009 (sys)	± 0.007 (sys)	± 0.007 (sys)	± 0.009 (sys)	± 0.008 (sys)	± 0.005 (sys)	± 0.003 (sys)	± 0.004 (sys)				
17.0 -	0.354 +0.049,-0.048 (stat)	-0.188 +0.074,-0.084 (stat)	-0.266 +0.063,-0.072 (stat)	-0.323 +0.063,-0.072 (stat)	0.305 +0.049,-0.048 (stat)	0.044 +0.073,-0.072 (stat)	0.013 +0.071,-0.070 (stat)	-0.094 +0.065,-0.067 (stat)				
19.0	± 0.025 (sys)	± 0.017 (sys)	± 0.010 (sys)	± 0.009 (sys)	± 0.013 (sys)	± 0.013 (sys)	± 0.005 (sys)	± 0.004 (sys)				
	Plot	Plot	Plot	Plot	Plot	Plot	Plot	Plot				
	SelectFox	SearcePlot	Selectified	Selectified	Selectified	Selectified	SelectFor	Selectifies				

Correlation tables

- ⇒ The main problem was the correlation tables...
- \Rightarrow We had around 80 of them...

	$ F_{ m L} $	S_3	S_4	S_5	$A_{ m FB}$	S_7	S_8	S_9
$F_{ m L}$	1.00	0.06	0.00	0.03	0.04	-0.02	0.07	0.08
S_3		1.00	0.01	0.10	-0.00	-0.07	-0.01	-0.03
S_4			1.00	0.08	0.11	-0.00	0.07	0.02
S_5				1.00	0.05	-0.01	0.00	0.04
$A_{ m FB}$					1.00	0.03	-0.07	0.02
S_7						1.00	0.01	0.11
S_8							1.00	0.02
S_9								1.00

Correlation tables

- ⇒ The main problem was the correlation tables...
- \Rightarrow We had around 80 of them...

q^2 = M**2(<mu+ mu-="">)</mu+>	0.1-0.98 GeV^2									
RE	P P> B0 < K*(892) < K+ PI- > MU+ MU- > X									
SQRT(S)	7000.0 GeV									
SQRT(S)	8000.0 GeV									
CORR	$F_{ m L}$	$F_{ m L}$ S_3 S_4 S_5 $A_{ m FB}$ S_7 S_8 S_9								
$F_{ m L}$	1.00	0.06	0.00	0.03	0.04	-0.02	0.07	80.0		
S_3	0.06	1.00	0.01	0.10	0.00	-0.07	-0.01	-0.03		
S_4	0.00	0.01	1.00	0.08	0.11	0.00	0.07	0.02		
S_5	0.03	0.10	0.08	1.00	0.05	-0.01	0.00	0.04		
$A_{ m FB}$	0.04	0.00	0.11	0.05	1.00	0.03	-0.07	0.02		
S_7	-0.02	-0.07	0.00	-0.01	0.03	1.00	0.01	0.11		
S_8	0.07	-0.01	0.07	0.00	-0.07	0.01	1.00	0.02		
S_9	0.08	-0.03	0.02	0.04	0.02	0.11	0.02	1.00		

HepData format

⇒ So HepData format is completely different then tex.

```
*dataset:
*location: Appendix C
*dscomment: Likelihood correlation matrix $0.1 < q^2 < 0.98~{\rm GeV}^2/c^4$.
*qual: Sq^2S = M**2(<MU+ MU->) IN GEV**2: 0.1 TO 0.98
*reackev: P P --> B0 + X
*obskev: CORR
*qual: RE : P P --> B0 < K*(892) < K+ PI- > MU+ MU- > X
*qual: SQRT(S) IN GEV: 7000.0
*qual: SORT(S) IN GEV: 8000.0
*yheader: $F {\rm L}$ : $S 3$ : $S 4$ : $S 5$ : $A {\rm FB}$ : $S 7$ : $S 8$ : $S 9$
*xheader: CORR
*data: x : y : y : y : y : y : y : y
SF {\rm L}$; 1.00; 0.06; 0.00; 0.03; 0.04; -0.02; 0.07; 0.08;
$$ 3$: 0.06: 1.00: 0.01: 0.10: 0.00: -0.07: -0.01: -0.03:
$$ 4$: 0.00: 0.01: 1.00: 0.08: 0.11: 0.00: 0.07: 0.02:
$5_5$; 0.03; 0.10; 0.08; 1.00; 0.05; -0.01; 0.00; 0.04;
$A_{\rm FB}$; 0.04; 0.00; 0.11; 0.05; 1.00; 0.03; -0.07; 0.02;
$5_7$; -0.02; -0.07; 0.00; -0.01; 0.03; 1.00; 0.01; 0.11;
$$ 8$; 0.07; -0.01; 0.07; 0.00; -0.07; 0.01; 1.00; 0.02;
$$ 9$: 0.08: -0.03; 0.02; 0.04; 0.02; 0.11; 0.02; 1.00;
*dataend:
```

- ⇒ Written in python.
- ⇒ Will briefly go through the some of it's functions.

```
class Table:
   def __init__(self, header, columns, matrix):
        self.header = header
        self.columns = columns
        self.matrix = matrix
        self.matrix fix = []
        self.table = ''
   def get(self, row, column):
        if row > column:
           return self.get(column. row)
        return self.matrix[row][column - row]
   def get row(self, row):
        return self.matrix[row]
   def __str__(self):
        return self. unicode ()
   def fixmatrix(self):
        print self.matrix
        self.matrix fix = self.matrix
        for i in range(0, len(self.matrix)):
           print self.matrix[i]
           for j in range(0, len(self.matrix[i])):
                if (self.matrix[i][j] == ' ' or self.matrix[i][j] == ' ' or self.matrix[i][j] == ' ' or self.matrix[i][j] == '
                    self.matrix_fix[i][j] = get_ride_of_latex(self.matrix[j - 1][i + 1])
                   #print(i.i. self.matrix[i-1][i+1])
                else:
                   #print(i,i, get ride of latex(self.matrix[i][i]))
                   self.matrix fix[i][j] = get ride of latex(self.matrix[i][j])
```

- ⇒ Written in python.
- ⇒ Will briefly go through the some of it's functions.

```
def get string(self):
    s = '*data: x : '
    for i in range(1, len(self.matrix_fix[0]) - 1):
        s += "v :"
    s += " v "
    self.table += s + '\n'
    for i in range(0, len(self.matrix_fix)):
        s += self.columns[i + 1] + " : "
        for j in range(1, len(self.matrix_fix[i])):
            #print('a',self.matrix_fix[j-1][i+1])
            s += get_ride_of_latex(self.matrix_fix[j - 1][i + 1]) + ' : '
        self.table += s + '\n'
        # self.table+= \
    print("TEST: ", self.matrix_fix)
def __unicode__(self):
    dupa=":".join(self.columns)
    dupa=dupa.replace(': ', '', 1)
```

#print(dupa)

- ⇒ Written in python.
- ⇒ Will briefly go through the some of it's functions.

```
print("TEST: ", self.matrix_fix)
    def unicode (self):
        dupa=":".join(self.columns)
        dupa=dupa.replace(': ', '', 1)
        #print(dupa)
        return """*dataset:
*location: Appendix G
*dscomment: %s
*vheader: %s
*data CHANGEME
*dataend:
 "" % (self.header, dupa, self.table)
class TableBuilder:
    def init (self):
        self.header = None
        self.columns = None
        self.matrix = []
        self.matrix fix = []
    def add row(self, row):
        self.matrix.append(row)
    def build(self):
        return Table(self.header, self.columns, self.matrix)
    def parce table header(self line).
```

- ⇒ Written in python.
- ⇒ Will briefly go through the some of it's functions.

```
def is_hline(self, line):
    return line.startswith(r'\hline')

def is_table_header(self, line):
    return line.startswith(r'\subsection')

def is_table_begin(self, line):
    return line.startswith(r'\begin{tabular}')

def is_table_end(self, line):
    return line.startswith(r'\end{tabular}')

def build(self):
    self.state = ParserStateEnum.DONE
    self.table = self.builder.build()
```

- ⇒ Written in python.
- ⇒ Will briefly go through the some of it's functions.

User case

⇒ There will be things that need to be changed for each table:

```
def get_ride_of_latex(line):
    line2 = line
    line2 = line2.replace(r"\\rm", r"\rm")
    line2 = line2.replace(r"\\", "")
    line2 = line2.replace(r'\s', '')
    line2 = line2.replace(r'\', '')
    line2 = line2.replace(r'\', '')
    #line2 = line2.replace(r'\gevgevcccc', 'GeV/c^4')
    return line2
```

Error encoding

⇒ If you need to encode errors in HepData format:

```
*yheader: F_{\rm L} : S_{3} : S_{4} : S_{5} : A_{\rm FB} : S_{7} : S_{8} : S_{9}
*data: x : y : y : y : y : y : y : y
                0.263 +0.045.-0.044(DSYS=0.017) :
                                                     -0.036 +0.063, -0.063(DSYS=0.005);
+0.058,-0.057(DSYS=0.009);
                               0.015 +0.059, -0.059(DSYS=0.006);
                                                                   0.079 +0.076, -0.075(DSYS
1.1 TO 2.5:
                0.660 +0.083,-0.077(DSYS=0.022);
                                                   -0.077 +0.087, -0.105(DSYS=0.005);
+0.068,-0.080(DSYS=0.012);
                         -0.219 +0.094, -0.104(DSYS=0.004);
                                                               -0.098 +0.108,-0.123(DSY
                0.876 +0.109, -0.097(DSYS=0.017) ;
                                                     0.035 +0.098, -0.089(DSYS=0.007) :
2.5 TO 4.0 :
+0.082,-0.090(DSYS=0.007);
                              0.068 +0.120, -0.112(DSYS=0.005) ;
                                                                  0.030 +0.129, -0.131(DSYS=
4.0 TO 6.0 ;
                0.611 +0.052, -0.053(DSYS=0.017);
                                                     0.035 +0.069, -0.068(DSYS=0.007);
+0.051.-0.052(DSYS=0.004); -0.016 +0.081.-0.080(DSYS=0.004); 0.167 +0.094.-0.091(DSYS
                0.579 +0.046.-0.046(DSYS=0.015) : -0.042 +0.058.-0.059(DSYS=0.011) :
5 A TO 8 A ·
```

Submitting procedure

- ⇒ Albert and Marco have put in a procedure for submitting your results to HepData:
- You contact Alex Grecu that he prepares you a temporary slot on HepData. You will get from him number and password that you can use for logging.
- He will also prepare a JIRA task for this data submission.
- You code in your result (please remember to always have your own copy as data can be lost in HepData portal).
- Once you finish coding, your results will be reviewed/sign off by the analysis e-group.
- RD convenors are also in the loop.
- After you collected enough pokemons (:P) Alex submits this to HepData.

Summary

- \Rightarrow HepData is a tricky format that unfortunately is not similar to other ones :(
- \Rightarrow I am afraid that everyone has to adjust those scripts for they tables.
- ⇒ If you want to put the results to HepData do it with the paper submission!
- ⇒ If you already produced some results and want to copy them from tex files to Hepdata you can start with my scripts:

http://www.physik.uzh.ch/~mchrzasz/HepData/KstarMuMu/

⇒ Or on git:

https://git.physik.uzh.ch/gitbucket/mchrzasz/HepData

Backup