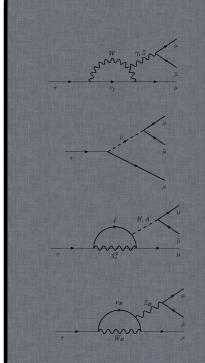
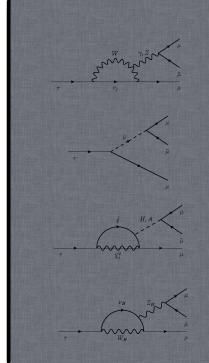
FCNF and L/BNV in Λ_c decays


Marcin Chrząszcz^{1,2}, Tadeusz Lesiak¹, Mariusz Witek¹

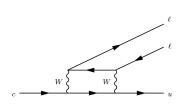
¹ Institute of Nuclear Physics, Krakow, ² University of Zurich

12th Feb 2014

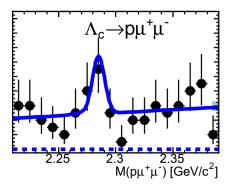

Motivation

Strategy

Normalization channel


MVA

Summary


Why to search for $\Lambda_c \rightarrow \mathbf{p}\mu^+\mu^-$?

- Decay of $\Lambda_c^+ \to p \mu^+ \mu^-$ is a FCNC.
- Extremely suppressed in SM due to GIM mechanism.
- We will use the experience from $\tau \rightarrow p \mu \mu$.

 ${\cal B}(\Lambda_c^+ o p \mu^- \mu^+) < 4.4 imes 10^{-5}$ 90% CL arXiv:1107.4465

We should easily beat Babar.

Yield: $11.1 \pm 5.0 \pm 2.5$

M.Chrząszcz 2014

Report on $\tau \to p\ell\ell$

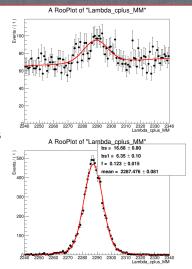
Strategy

Follow the strategy of τ analysis:

- Take prompt Λ_c , separate approach to SL.
- Loose cut preselection.
- Train MVA on MC prompt signal and recalibrate on data.
- Calibrate on date.
- Normalize to $\Lambda_c^+ \to p \mathcal{K}^- \pi^+$, $\Lambda_c^+ \to p \pi^- \pi^+$ or $\Lambda_c \to p \phi(\mu \mu)$.
- Optimise the binning in MVA.
- CLs method for limit.

Normalization channel

• We have 3 candidates for normalization channel.


1
$$\Lambda_c \to p\phi(\mu\mu), BR = (2.4 \pm 0.8) \times 10^{-7}$$

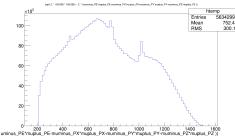
2 $\Lambda_c^+ \to pK^-\pi^+, BR = (5.0 \pm 1.3) \times 10^{-2}$

3
$$\Lambda_c^+ \rightarrow p \pi^- \pi^+$$
, $BR = (3.5 \pm 2.0) \times 10^{-3}$

From above list $\Lambda_c \rightarrow p\phi(\mu\mu)$ is a perfect candidate for normalization. However Br is a bit low.

First look in data I

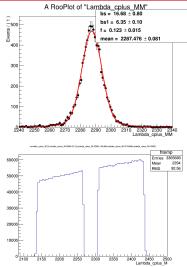
- With some PID and vertex cuts we can see our Λ_c → pφ(μμ)
- Back of the envelope calculations predict we should have 400 of those events in 3fb⁻¹
- A bit small for normalization.



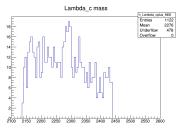
Possible background

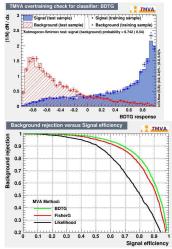
Resonance	$\mathcal{B}(\Lambda_{m{c}} o m{ ho} X)$	$\mathcal{B}(\pmb{X} o \mu\mu)$
η	UNKNOWN	$(5.8\pm0.6) imes10^{-6}$
ρ^{0}	UNKNOWN	$(4.55\pm0.28) imes10^{-5}$
ω	UNKNOWN	$(9.1\pm 3.0) imes 10^{-5}$
f(980)	$(2.8 \pm 1.9) imes 10^{-3}$	UNKNOWN
ϕ	$(8.2\pm2.7) imes10^{-4}$	$(2.89\pm0.19) imes10^{-4}$
Resonance	$\mathcal{B}(\Lambda_{m{c}} o m{ ho} X)$	${\cal B}({\it X} o \mu\mu\gamma)$
η	UNKNOWN	$(3.1\pm 0.4) imes 10^{-4}$

First look in data II


- We also have looked at dimuon spectrum.
- Clearly ϕ , η , ω visible.
- We also see in data $\Lambda_c \rightarrow \omega(\mu\mu)p$.

Preliminary selection


Stripping:


- PID(μ)>-5, PID(p) >10
- IPCHi2>9, PID(μ K)>0, GHOST<0.3, PID(p)>10, Pt>300
- ∆*m* < 150*MeV*
- cτ > 100μm
- IPChi2 < 225
- Additional:
 - Blind region
 |m(pµµ) 2286.46| < 20MeV.</p>
 - φ, ω veto.

Preliminary TMVA

- Variables adopted form $\tau \rightarrow 3\mu$ (see Marta's talk).
- In the future we will use Blending for the classifiers.
- Already thanks to this BDTG we can pick up $\Lambda_c \rightarrow \omega(\mu\mu)p$.

Summary

- Looks like we will have limits $\mathcal{O}(10^{-7})$ $\mathcal{O}(10^{-8})$
- We already see a new $\Lambda_c \rightarrow \omega p$ decay!
- Normalization channel is still open, but we are converging towards $\Lambda_c^+ \to p \pi^- \pi^+$
- We have one tight cut on the stripping (flight distance), we are considering several solutions.