Updates on activities.

Marcin Chrząszcz^{1,2}, Nicola Serra¹

¹ University of Zurich , ² Institute of Nuclear Physics, Krakow,

February 11, 2014

$$\tau \rightarrow 3\mu$$

 $\Lambda_c
ightarrow p \mu \mu$

To much charm?

- We observed a small discrepancy in IP for our control channel: $D_s \rightarrow \phi(\mu\mu)\pi$.
- I made a cross check if this is really serious by fluctuating the *bb* to *cc* by one sigma.
- Everything is consistent.

 $\Lambda_{c}
ightarrow
ho \mu \mu$ peaking bck

M.Chrząszcz, N.Serra 2014

$\Lambda_c ightarrow ho \mu \mu$ peaking bck

sqt(2. * 105.658 * 106.658 + 2. * (muminus_PE*muplus_PE-muminus_PX*muplus_PX-muminus_PY*muplus_PY-muminus_PZ*muplus_PZ.))

• We see ϕ , η , ω

 $\Lambda_{c}
ightarrow
ho \mu \mu$ TMVA

In the end I will use BLENDING :)

M.Chrząszcz, N.Serra 2014

Method of moments:

- Last meeting showed how orthogonality of the does magic for method of moments.
- 2 Using toy MC (experimental math) checked the errors estimates.
- Ohecked that it does not suffer from boundary conditions.
- 4 Many thanks to Tom for checking all my calculations.

For today:

1 How this method behaves in terms of background?

What do we start with

Let's assume for simplicity we have our pdf:

$$\frac{d^{4}\Gamma}{\Gamma dq^{2} d\cos\theta_{k} d\cos\theta_{l} d\phi} = \frac{9}{32\pi} (\frac{3}{4}(1-F_{l})\sin^{2}\theta_{k} + F_{l}\cos^{2}\theta_{k} + (\frac{1}{4}(1-F_{l})\sin^{2}\theta_{k} - F_{l}\cos^{2}\theta_{k})\cos\theta_{l} + S_{3}\sin^{2}\theta_{k}\sin^{2}\theta_{l}\cos2\phi + S_{4}\sin2\theta_{k}\sin\theta_{l}\cos\phi + S_{5}\sin2\theta_{k}\sin\theta_{l}\cos\phi + (S_{6s}\sin^{2}\theta_{k})\cos\theta_{l} + S_{7}\sin2\theta_{k}\sin\theta_{l}\sin\phi + S_{8}\sin2\theta_{k}\sin2\theta_{l}\sin\rho_{l} + S_{9}\sin^{2}\theta_{k}\sin^{2}\theta_{l}\sin2\phi)$$
(1)

What did we assume:

- S_{1x} , J_{2x} can be parametrized by F_{l} .
- $S_{6c} = 0.$
- In short what was in the paper.

Obtained moments 1

Lets see how this works in practice:

$$\frac{d^{3}\Gamma}{\Gamma dcos\theta_{k} dcos\theta_{l} d\phi} \sin^{2}\theta_{k} = \frac{2}{5}(2 - F_{l})$$
⁽²⁾

$$\frac{d^{3}\Gamma}{\Gamma dcos\theta_{k} dcos\theta_{l} d\phi} \cos^{2}\theta_{k} = \frac{1}{5}(1+F_{l})$$
(3)

$$\frac{d^{3}\Gamma}{\Gamma dcos\theta_{k} dcos\theta_{l} d\phi} \sin^{2}\theta_{k} \cos 2\theta_{l} = -\frac{2}{25}(2+F_{l})$$
(4)

$$\frac{d^{3}\Gamma}{\Gamma dcos\theta_{k} dcos\theta_{l} d\phi} \cos^{2}\theta_{k} \cos 2\theta_{l} = -\frac{1}{25}(1+8F_{l})$$
(5)

$$\frac{d^{3}\Gamma}{\Gamma dcos\theta_{k} dcos\theta_{l} d\phi} \sin^{2}\theta_{k} \cos\theta_{l} = \frac{2S_{6s}}{5}$$
(6)

Obtained moments 2

Studied background region

- Defined B⁰ mass bins: 1 : (5,5,15)∪2 : (5.15,5.22)∪3 : (5.35,5.5) ∪ 4 : (5.5,6) GeV
 1 Region 5:(5.35,6)
 - 2 Region 6:(5, 5.22)
- use the old q² bins:
 - 0:0,2
 - 1:2, 4.3
 - 2:4.3,8,6
 - 3:10.1, 12.9
 - 4:14.2, 16
 - 5:16, 19
- Please remember the numbers, we will need then later on.

Summary

- Background moments are effectively 0
- Apart from F_1 and S_6
- *S*₆ is sizeable at the left hand sideband for certain bins, evidence of partially reconstructed semileptonic decays?
- Because the moments are small, they should have small effect on the final result :)

Wish list:

- Repeat the same with smaller q^2 bins.
- Optimise the binning in q² taking into account background systematics and error on signal
- Do unfolding.