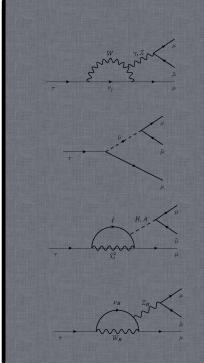
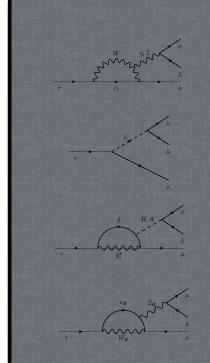
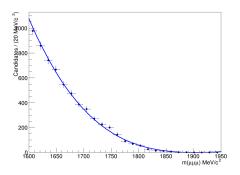
Updates on activities.


Marcin Chrząszcz^{1,2}, Nicola Serra¹

¹ University of Zurich , ² Institute of Nuclear Physics, Krakow,

March 11, 2014

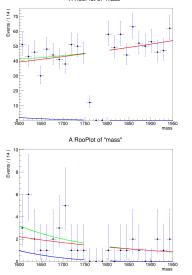



au ightarrow 3 μ many solutions

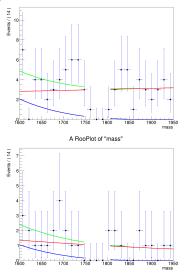
 ${\rm B}^0 \to {\rm K}^* \mu \mu$

$\mathbf{D}_{\mathbf{s}} \to \eta(\mu\mu\gamma)\mu\nu$

- In 2011we cut away the $D_s \rightarrow \eta(\mu\mu\gamma)\mu\nu$ cuz we could not model it.
- Now we increased the statistics in our sample(42*fb*⁻¹).
- The η shape fits very nicely.



Fitting procedure


- Fix the η shape from MC.
- For bin each calculate the corresponding η yield(error is 23%)
- Constrain the yield by gauss+poiss.
- Allowe it to fluctuate by 3σ

Results

A RooPlot of "mass"

A RooPlot of "mass"

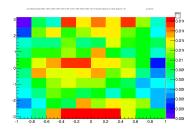
M.Chrząszcz, N.Serra 2014

Update on analysis

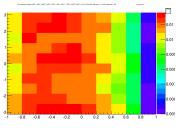
au
ightarrow 3 μ many solutions

5/8

Fitting procedure


- Looks like we can now leave the η and not cut inside Dalitz
- Wider NP access.

Normalization


- Since I think I solved all the problems with 2011 limit i moved to 2012 data.
- Finished last round of simulation with different TCK(death to trigger people, who changed the trigger so many times)
- Normalization α is 2.2× better in 2012 then in 2011.

${f B^0} ightarrow {f K^*} \mu \mu$ unfolding

- One of the possible ways to unfold $B^0 \to K^* \mu \mu$ with event weighting.
- First attempt is to make 3D histogram for each q^2 bin.

 $\tau
ightarrow \mu \mu \mu$

 $D_s \rightarrow \phi(\mu\mu)\pi$