Updates on activities.

Marcin Chrząszcz^{1,2}, Nicola Serra¹

¹ University of Zurich , ² Institute of Nuclear Physics, Krakow,

March 25, 2014

au ightarrow 3 μ many solutions

 $\mathbf{K}^{*}\boldsymbol{\mu}\boldsymbol{\mu}$

$\mathbf{D_s} \to \eta(\mu\mu\gamma)\mu\nu$

- Last time I showed you the fits with η background.
- Now the fits are updated with the η calibrated $D_s \to \eta(\mu\mu\gamma)\mu\nu$ yield.
- Still everything looks fine.

 $\overline{\mathbf{D}}_{\mathbf{s}}
ightarrow \eta(\mu\mu\gamma)\mu
u$

M.Chrząszcz, N.Serra 2014

4 / 10

Expected limit

Note was send to conveners on Monday.

• We decided to give two limits with $D_s \rightarrow \eta(\mu\mu\gamma)\mu\nu$ and with η veto.

V0 of the note(no systematics in the limit):

1
$$\eta$$
 veto: $Br(\mu\mu\mu) < 4.8 \times 10^{-8}$

2
$$\eta$$
: $Br(\mu\mu\mu) < 4.7 \times 10^{-8}$

Yesterday I evaluated the limits with background systematics. The limits gets around: 5.1×10^{-8}

Unfolding for $\mathbf{K}^* \mu \mu$

- · Recently every one had statistics problems.
- I felt alienated that i have none.
- Thank god that Nico provided some problem :)

Nico hypothesis

We have our PDF:

$$PDF = \frac{d^{4}\Gamma}{dq^{2}d\cos\theta_{k}d\cos\theta_{l}d\phi} = \frac{9}{32\pi}(J_{1s}\sin^{2}\theta_{k} + J_{1c}\cos^{2}\theta_{k} + (J_{2s}\sin^{2}\theta_{k} + J_{2c}\cos^{2})\cos^{2}\theta_{l} + J_{3}\sin^{2}\theta_{k}\sin^{2}\theta_{l}\cos^{2}\phi + J_{4}\sin^{2}\theta_{k}\sin\theta_{l}\cos\phi + J_{5}\sin^{2}\theta_{k}\sin\theta_{l}\cos\phi + (J_{6s}\sin^{2}\theta_{k} + J_{6c}\cos^{2}\theta_{k})\cos\theta_{l} + J_{7}\sin^{2}\theta_{k}\sin\theta_{l}\sin\phi + J_{8}\sin^{2}\theta_{k}\sin^{2}\theta_{l}\sin\rho_{l} + J_{9}\sin^{2}\theta_{k}\sin^{2}\theta_{l}\sin^{2}\phi)$$
(1)

And corresponding moments measured moments: M_i^R corresponding to the *i*th moment. Nicos hypothesis: The true Moments: $M_i^T = A_j^i M_j^R$. But he can't prove it and it looks insane at the first looks. So in the process of proving he is wrong I proved that this is true.

M.Chrząszcz, N.Serra 2014

So the true moments: $M_i^T = \int PDFf_i = J_i \int f_i^2 = J_i \times const$ Now for the measurements you need to have some efficiency:

 $\epsilon(d\cos\theta_k, d\cos\theta_l, d\phi)$, we assume it is C^{∞} . So one can Taylor expand this function.

The only thing I need to proof now is that the arbitrary element in the Taylor expansion can be write using all J_i in the first order: $M_i^R = \int PDFf_i \cos \theta_k^x \cos^y \theta_I \phi^z = \sum_j J_j \int f_i f_j \cos \theta_k^x \cos^y \theta_I \phi^z = \sum_j J_j const_j$ Which ends the proof. I calculated explicit matrix element correspond to $\cos \theta_k^x \cos^y \theta_I \phi^z$, but it's 3 pages long(in the attachment if one likes horrors). The unfolding for the method of moments can(and will) be done with 2 unfolding approaches.

- Unfolding using matrix.
- Unfolding using event weighting using the same weights as for the fits.
- We can check internal consistency.