## Updates on activities.

## Marcin Chrząszcz ${ }^{1,2}$, Nicola Serra ${ }^{1}$

${ }^{1}$ University of Zurich, ${ }^{2}$ Institute of Nuclear Physics, Krakow,

March 25, 2014


## University of Zurich ${ }^{\text {UnH }}$


$\tau \rightarrow 3 \mu$ many solutions
$\mathbf{K}^{*} \mu \mu$


- Last time I showed you the fits with $\eta$ background.
- Now the fits are updated with the $\eta$ calibrated $\mathrm{D}_{\mathrm{s}} \rightarrow \eta(\mu \mu \gamma) \mu \nu$ yield.
- Still everything looks fine.




## Expected limit

- Note was send to conveners on Monday.

- We decided to give two limits with $\mathrm{D}_{\mathrm{s}} \rightarrow \eta(\mu \mu \gamma) \mu \nu$ and with $\eta$ veto.

V0 of the note(no systematics in the limit):
(1) $\eta$ veto: $\operatorname{Br}(\mu \mu \mu)<4.8 \times 10^{-8}$
(2) $\eta: \operatorname{Br}(\mu \mu \mu)<4.7 \times 10^{-8}$

Yesterday I evaluated the limits with background systematics. The limits gets around: $5.1 \times 10^{-8}$

## Unfolding for $\mathrm{K}^{*} \mu \mu$

- Recently every one had statistics problems.
- I felt alienated that i have none.
- Thank god that Nico provided some problem :)


## Nico hypothesis

We have our PDF:

$$
\begin{gather*}
P D F=\frac{d^{4} \Gamma}{d q^{2} d \cos \theta_{k} d \cos \theta_{l} d \phi}=\frac{9}{32 \pi}\left(J_{1 s} \sin ^{2} \theta_{k}+J_{1 c} \cos ^{2} \theta_{k}+\left(J_{2 s} \sin ^{2} \theta_{k}+\right.\right. \\
\left.J_{2 c} \cos ^{2}\right) \cos 2 \theta_{l}+J_{3} \sin ^{2} \theta_{k} \sin ^{2} \theta_{l} \cos 2 \phi+J_{4} \sin 2 \theta_{k} \sin \theta_{l} \cos \phi+ \\
J_{5} \sin 2 \theta_{k} \sin \theta_{l} \cos \phi+\left(J_{6 s} \sin ^{2} \theta_{k}+J_{6 c} \cos ^{2} \theta_{k}\right) \cos \theta_{l}+ \\
\left.J_{7} \sin 2 \theta_{k} \sin \theta_{l} \sin \phi+J_{8} \sin 2 \theta_{k} \sin 2 \theta_{l} \operatorname{sinphi}+J_{9} \sin ^{2} \theta_{k} \sin ^{2} \theta_{l} \sin 2 \phi\right) \tag{1}
\end{gather*}
$$

And corresponding moments measured moments: $M_{i}^{R}$ corresponding to the $i^{\text {th }}$ moment. Nicos hypothesis: The true Moments: $M_{i}^{T}=A_{j}^{i} M_{j}^{R}$. But he can't prove it and it looks insane at the first looks. So in the process of proving he is wrong I proved that this is true.

## Nico hypothesis, proof

So the true moments: $M_{i}^{T}=\int P D F f_{i}=J_{i} \int f_{i}^{2}=J_{i} \times$ const Now for the measurements you need to have some efficiency:
$\epsilon\left(d \cos \theta_{k}, d \cos \theta_{l}, d \phi\right)$, we assume it is $C^{\infty}$. So one can Taylor expand this function.
The only thing I need to proof now is that the arbitrary element in the Taylor expansion can be write using all $J_{i}$ in the first order: $M_{i}^{R}=$ $\int P D F f_{i} \cos \theta_{k}^{x} \cos ^{y} \theta_{l} \phi^{2}=\sum_{j} J_{j} \int f_{i} f_{j} \cos \theta_{k}^{x} \cos ^{y} \theta_{l} \phi^{2}=\sum_{j} J_{j} \operatorname{const}_{j}$ Which ends the proof. I calculated explicit matrix element correspond to $\cos \theta_{k}^{x} \cos ^{y} \theta_{l} \phi^{z}$, but it's 3 pages long(in the attachment if one likes horrors).

## Back to the unfolding

The unfolding for the method of moments can(and will) be done with 2 unfolding approaches.

- Unfolding using matrix.
- Unfolding using event weighting using the same weights as for the fits.
- We can check internal consistency.

