$\tau \to \mu \mu \mu$ at LHCb

Marcin Chrzaszcz

Institute of Nuclear Physics PAN

May 16, 2012

General rewiew of LHCb

- First Informations
- Detector
- Theoretical and experimental status

2 Analysys strategy

- General informations
- τ production
- Binning optimisation
- MVA parameter space
- Normalization

3 Background

- SM background
- SM background
- Background extraction
- Results

General Informations

- Fresh analyses! Aproved less than 24h ago.
- Premision to only speak generally without going to any details.
- Will try to be clouse to the boundry of what I can say

Appologyse

All details will be avaible avaible on FPCP conference so stay tune!

LHCb detector

LHCb detector

Strong features of LHCb detector:

- Good particle indentyfication due to RICH detectors.
- State of the art strip detector provides good
- High luminosity. Nowadays operating 4 $10^{-32}cm^{-2}s^{-1}$. We target to get 1.5*fb* in 2012.

Theoretical and experimental status

Strong features of LHCb detector:

- LFV has been observed in neutrino oscillations.
- Never saw in charge sector.
- Depending on the model $au o \mu \mu \mu$ can be dominant over $au o \mu \gamma$

General informations

Three separate Likelihoods to discriminate background

- Geometry and topology
- Particle indentyfication
- Three body invariant mass
- Training done on MC samples:
 - $\tau \rightarrow \mu \mu \mu$
 - $b \overline{b}
 ightarrow \mu \mu X$ and $c \overline{c}
 ightarrow \mu \mu X$
- Oifferent input variables, MVA operators and training methods examined, choice: highest performance & simplest

Decay chain	Gauss no DPC $(\%)$	Calc $(\%)$	$w_{MC \rightarrow calc}$
$D_s \to \tau$	72.3 ± 0.1	77.9 ± 4.7	
$D_s \to \tau$	62.6 ± 0.2	67.8 ± 4.8	1.08 ± 0.08
$B_x \to D_s \to \tau$	9.56 ± 0.07	10.1 ± 2.1	1.1 ± 0.2
$D^- ightarrow \tau$	2.08 ± 0.03	4.6 ± 4.4	
$D^- ightarrow \tau$	1.90 ± 0.02	4.4 ± 4.2	2.3 ± 2.2
$B_x \to D^- \to \tau$	0.18 ± 0.01	0.3 ± 0.3	1.5 ± 1.5
$B_x \to \tau$	25.5 ± 0.1	17.5 ± 3.3	0.7 ± 0.1

MC signal sample generated with phase space distribution

Binning optimisation

The mentioned 3D plane(mass, kinematics, and geometry with topology) was divided into bins. The optimisation of that binning was done using CLs method.

9 / 15

MVA parameter space

For the geometry and kinematics MVA is callibrated using $D_s \rightarrow \phi(\mu\mu)\pi$.

Normalization

 τ BR was normalized to $\mathit{D_s} \rightarrow \phi(\mu\mu)\pi$

$$BR = BR_{D_S \to \phi\pi} \cdot \frac{f(\tau(D_S))}{BR(D_S \to \tau X)} \cdot \frac{\varepsilon_{cal}^{RecSel} \cdot \varepsilon_{cal}^{Irig}}{\varepsilon_{Bs}^{RecSel} \cdot \varepsilon_{Bs}^{Trig}} \cdot \frac{N_{\tau \to \mu\mu\mu}}{N_{D_S \to \phi\pi}} = \alpha \cdot N_{\tau \to \mu\mu\mu}$$

4

LHCb is not a B factory. We have ireducable background! And we have to life with it.

$D_s^+ \mbox{ decay}$	$\mathcal{B}_1^{(*)}$	Secondary decays	\mathcal{B}_2	$\mathcal{B}_{tot} = \mathcal{B}_1 \times \mathcal{B}_2$	$\sigma(D_s \rightarrow 3\mu X)$
$\eta \mu^+ u_\mu$	2.67×10^{-2}	$\begin{array}{l} \eta \rightarrow \mu^+ \mu^- \\ \eta \rightarrow \mu^+ \mu^- \gamma \\ \eta \rightarrow \pi^0 \mu^+ \mu^- \gamma \end{array}$	$\begin{array}{l} 5.8\times 10^{-5}\\ 3.1\times 10^{-4}\\ < 3\times 10^{-6} \end{array}$	$\begin{array}{c} 1.5\times 10^{-6} \\ 8.2\times 10^{-6} \\ < 8.0\times 10^{-8} \end{array}$	0.3 nb 1.7 nb < 0.02 nb
$\eta' \mu^+ u_\mu$	9.9×10^{-3}	$\eta' ightarrow \mu^+ \mu^- \gamma$	1.07×10^{-4}	$1.1 imes 10^{-6}$	0.2 nb
$\phi \mu^+ u_\mu$	2.49×10^{-2}	$\begin{array}{l} \phi \rightarrow \mu^+ \mu^- \\ \phi \rightarrow \mu^+ \mu^- \gamma \\ \phi \rightarrow \mu^+ \mu^- \pi^0 \end{array}$	$\begin{array}{c} 2.87 \times 10^{-4} \\ 1.4 \times 10^{-5} \\ 1.2 \times 10^{-5} (\dagger) \end{array}$	$\begin{array}{c} 7.1 \times 10^{-6} \\ 3.4 \times 10^{-7} \\ 2.8 \times 10^{-7} \end{array}$	1.6 nb 0.07 nb 0.06 nb

(*) : given branching ratios are from corresponding $e\nu_e$ decays.

(†) : given branching ratio is from $\phi \to e^+e^-\pi^0$ decays.

$D_s \rightarrow (\eta \rightarrow \mu \mu \gamma) \mu \nu$

This decay was badly simulated in current version of MC. For proper simulation new method in EvtGen was written. It took into account form factors comming from NA60 experiment. arXiv:1108.0968

For the purpouse of this analyses 5M events were simulated in a private production in IFJ computing cloud. Many thanks to Mariusz Witek for computing resourses!

Marcin Chrzaszcz (IFJ PAN)

Background extraction

There are 3 possibilities to deal with background.

- Treat it as normal combinatorical background.
- Veto the η .
- Parametrize the η background and fit with combinatorical.

Results

- LHCb is capable of performing $\tau \rightarrow \mu \mu \mu$ measurements.
- Method is completly different from the one used in B factories. We are cuting the phase space
- Looking for perticular model of decay could increase our sensetiwity. Need MC generators for that.

Thank you for your attention.

