Electroweak penguin decays to leptons and Radiative decays at LHCb

Marcin Chrząszcz mchrzasz@cern.ch

Zurich meeting, CERN September 24, 2014

1. Rare *B* decays: $\circ B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$ $\circ B^0_s/B^0 \rightarrow \mu^- \mu^+.$

$$\circ \ B^0 \to K^* \mu^- \mu^+.$$

Why rare decays?

- In SM allows only the charged interactions to change flavour.
 - Other interactions are flavour conserving.
- One can escape this constrain and produce $b \to s$ and $b \to d$ at loop level.
 - $\circ~$ This kind of processes are suppressed in SM \rightarrow Rare decays.
 - New Physics can enter in the loops.

/23

 W^{\pm}

Tools

• Operator Product Expansion and Effective Field Theory

where C_i are the Wilson coefficients and O_i are the corresponding effective operators.

-12 Troo

Radiative decays

- $B^0 \rightarrow K^* \gamma$ first observed penguin! • CLEO, [PRL, 71 (1993) 674]
- B-factories probed NP measuring, inclusively/ semi-inclusively $\mathcal{B}(b \to s \gamma)$
- Is there any way LHCb can contribute?
 - $\circ~$ Measurements of $\mathcal{B}(b \rightarrow s \gamma)$ very difficult.
 - Can probe the photon polarization!

- In SM, photons form $b \to s \gamma$ decays are left handed.

 $\circ~$ Charged current interactions: $C_7/C_7^\prime \sim m_b/m_s$

- Can test C_7/C_7' using:
 - Mixing induced CP violation: Atwood et. al. PRL 79 (1997) 185-188
 - $\circ~\Lambda_b$ baryons: Hiller & kagan PRD 65 (2002) 074038

Photon polarization from $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$

- OR: Study $B \to K^{**} \gamma$ decays like $B^+ \to K_1(1270) \gamma$
 - Gronau & Pirjol PRD 66 (2002) 054008
- The trick is to get the photon polarization from the up-down asymmetry of photon direction in the $K\pi\pi$ rest frame.
 - $\circ~$ No asymmetry \rightarrow Unpolarised photons.
- Conceptionally this measurement is similar to the Wu experiment, which first observed parity violation.

/23

$\overline{B^+ ightarrow} \, K^+ \pi^- \pi^+ \gamma$ at LHCb

- LHCb looked at $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$, using un-converted photons.
- Got over 13.000 candidates in $3 f b^{-1}!$
- Phys. Rev. Lett. 112, 161801
- $K^+\pi^-\pi^+$ system has variety of resonances.
 - $\circ K\pi\pi$ system studied inclusively.
 - Bin the $m_{K\pi\pi}$ mass and look for polarization there.

23

Fit with $(C'_7 - C_7)/(C'_7 + C_7) = 0$, Best fit

Marcin Chrząszcz (Universität Zürich)

Electroweak penguin decays to leptons and Radiative decays at LHCb

8/23

Up-down asymmetry

- Combining the 4 bins, the hypothesis of non photon polarisation can be excluded with 5.2σ significance.
- Unfortunately without understanding the hadron system it is impossible to tell if the photon is left or right -handed.

 $\rightarrow~$ First observation of photon polarization in $b \rightarrow s \gamma !$

- Ideal solution would be to leave photon polarization free in the fit.
- No general description exist → input from theory community needed.

$B_{(s)} \to \mu^+ \mu^-$

 Clean theoretical prediction, GIM and helicity suppressed in the SM:

•
$$\mathcal{B}(B_s^0 \to \mu^- \mu^+) = (3.66 \pm 0.23) \times 10^{-9}$$

•
$$\mathcal{B}(B^0 \to \mu^- \mu^+) = (1.06 \pm 0.09) \times 10^{-10}$$

• 50% of the error comes from lattice.

- SM predictions from Phys. Rev. Lett. 112, 101801 (2014).
- Sensitive to contributions from scalar and pesudoscalar couplings.
- Probing: MSSM, higgs sector, etc.
- In MSSM: ${\cal B}(B^0_s\to\mu^-\mu^+)\sim {\rm tg}^6\,\beta/m_A^4$

$B_{(s)} \rightarrow \mu^+ \mu^-$ Results

- Measured BF: $\mathcal{B}(B^0_s \to \mu^- \mu^+) = (2.9^{+1.1}_{-1.0}(stat.)^{+0.3}_{-0.1}(syst.)) \times 10^{-9}$
- 4.0σ significance!
- $\mathcal{B}(B^0 \rightarrow \mu^- \mu^+) < 7 \times 10^{-10}$ at $95\%~\mathrm{CL}$
- PRL 110 (2013) 021801
- CMS result: PRL 111 (2013) 101805

LHCb+CMS combined analysis

$$\mathcal{B}(B_s^0 \to \mu^- \mu^+) = (2.8^{+0.7}_{-0.6}) \times 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^- \mu^+) = (3.9^{+1.6}_{-1.4}) \times 10^{-10}$$

Nature 522, 7554

 $^{12}/_{23}$

$B^0 \rightarrow K^* \mu \mu$ angular distributions

- $b \rightarrow s\ell\ell$ decays poses large spectrum of observables.
- LHCb favourite: $B^0 \rightarrow K^* \mu^- \mu^+$.
- Sensitive to lot of new physics models.
- Decay described by three angles θ_l, θ_K, ϕ and dimuon invariant mass q^2 .
- Analysis is performed in bins of q^2 .

3/23

$B^0 \rightarrow K^* \mu \mu$ selection

- BDT to suppress combinatorial background. Input variables: PID, kinematics and geometric quantities, isolations.
- Veto the $J\!/\!\psi$ and $\Psi(2S)$ resonances.
- CONF-2015-002

 $B^0 \rightarrow K^* \mu \mu$ mass modeling Control Channel: $B^0 \rightarrow J/\psi K^*$ Signal Channel: $B^0 \rightarrow \mu^- \mu^+ K^*$ $100^{\times 10^3}$ Events / 5.3 MeV/c² LHCb Events / 5.3 MeV/c² LHCb preliminary preliminary 200 5400 5600 5200 5200 5400 5600 $m(K^{+}\pi^{-}\mu^{+}\mu^{-})$ [MeV/c²] $m(K^{+}\pi^{-}\mu^{+}\mu^{-})$ [MeV/c²]

- Signal mass model from high statistics $B^0 \to J/\psi K^*.$
- Correction factor from simulation to account for q^2 dep. resolution.
- Finer q^2 binning allow more flexible usage for theoriets.
- Significant signal yield in all bins!
- Integrated over all bins we have 2398 ± 57 candidates.

$B^0 \rightarrow K^* \mu \mu$ mass modeling

- Finer q^2 binning allow more flexible usage for theoriets.
- Significant signal yield in all bins!
- Integrated over all bins we have 2398 ± 57 candidates.

$B^0 \rightarrow K^* \mu \mu$ angular distributions

• Angular distributions depends on 11 angular terms:

$$\begin{split} \frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}(\Gamma+\bar{\Gamma})}{\mathrm{d}\cos\theta_l \,\mathrm{d}\cos\theta_k \,\mathrm{d}\phi} \bigg|_{\mathrm{P}} &= \frac{9}{32\pi} \bigg[\frac{3}{4} (1-F_\mathrm{L}) \sin^2\theta_k \\ &+ F_\mathrm{L} \cos^2\theta_k + \frac{1}{4} (1-F_\mathrm{L}) \sin^2\theta_k \cos 2\theta_l \\ &- F_\mathrm{L} \cos^2\theta_k \cos 2\theta_l + S_3 \sin^2\theta_k \sin^2\theta_l \cos 2\phi \\ &+ S_4 \sin 2\theta_k \sin 2\theta_l \cos\phi + S_5 \sin 2\theta_k \sin^2\theta_l \cos\phi \\ &+ \frac{4}{3} A_{\mathrm{FB}} \sin^2\theta_k \cos\theta_l + S_7 \sin 2\theta_k \sin\theta_l \sin\phi \\ &+ S_8 \sin 2\theta_k \sin 2\theta_l \sin\phi + S_9 \sin^2\theta_k \sin^2\theta_l \sin 2\phi \bigg]. \end{split}$$

where the S_i are bilinear combinations of helicity amplitudes.

• We assume no scalar and tensor contribution and massless leptons.

S-wave pollution

- S-wave: $K^+\pi^-$ in spin 0 configuration
- Introduced by additional two decay amplitudes \rightarrow six observables.

$$\frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}(\Gamma+\bar{\Gamma})}{\mathrm{d}\cos\theta_l \,\mathrm{d}\cos\theta_k \,\mathrm{d}\phi} \bigg|_{\mathrm{S}+\mathrm{P}} = (1-F_S) \frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}(\Gamma+\bar{\Gamma})}{\mathrm{d}\cos\theta_l \,\mathrm{d}\cos\theta_k \,\mathrm{d}\phi} \bigg|_{\mathrm{F}} + \frac{3}{16\pi} \left[F_S \sin^2\theta_l + S - P \text{ interefence} \right].$$

- F_S dilutes the P-wave observables by a factor $1 F_S$.
- Needs to be taken into account \rightarrow fit the $m_{K\pi}$.
- Rel. BW for P-wave.
- LASS model for S-wave

//23

 $\overline{B^0 \to K}^* \mu \mu$ results

Marcin Chrząszcz (Universität Zürich)

Electroweak penguin decays to leptons and Radiative decays at LHCb

$B^0 \rightarrow K^* \mu \mu$ results

- Tension in P'_5 confirmed!
- [4.0, 6.0] and $[6.0, 8.0]~{
 m GeV}^2/{
 m c}^4$ show 2.9σ deviation each.
- Naive combination shows 3.7σ discrepancy.
- Result compatible with previous result.

Marcin Chrząszcz (Universität Zürich)

Understanding the $B^0 \rightarrow K^* \mu \mu$ anomaly

- Matias, Decotes-Genon & Virto performed a fit to our preliminary result.s
- Found $\sim 4\sigma$ discrepancy from SM.
- Fit favours $C_9^{NP} = -1.1$
- Moriond 2015 slides
- Straub performed the same analysis as Matias et. al.
- Found the same solution: $\rightarrow C_9$ modification.
- Data can be explained by introducing a flavour changing Z' boson, with mass $\mathcal{O}(10 \ TeV)$
- Moriond 2015 slides

Lepton universality

- If Z' is responsible for the P'_5 anomaly, does it couple equally to all flavours? $R_{\rm K} = \frac{\int_{q^2=1\,{\rm GeV}^2/c^4}^{q^2=6\,{\rm GeV}^2/c^4} ({\rm d}\mathcal{B}[B^+ \to K^+\mu^+\mu^-]/{\rm d}q^2){\rm d}q^2}{\int_{q^2=1\,{\rm GeV}^2/c^4}^{q^2=6\,{\rm GeV}^2/c^4} ({\rm d}\mathcal{B}[B^+ \to K^+e^+e^-]/{\rm d}q^2){\rm d}q^2} = 1 \pm \mathcal{O}(10^{-3}) \ .$
- Challenging analysis due to bremsstrahlung.
- Migration of events modeled by MC.
- Correct bremsstrahlung.
- Take double ratio with $B^+ \rightarrow J/\psi K^+$ to cancel systematics.
- In $3fb^{-1}$, LHCb measures $R_K = 0.745^{+0.090}_{-0.074}(stat.)^{+0.036}_{-0.036}(syst.)$
- Consistent with SM at 2.6σ .

 Phys. Rev. Lett. 113, 151601 (2014) Lepton universality with $B^0 \rightarrow K^* \mu \mu$ anomaly

- Lepton flavour universality cannot be explained by any QCD effect!
- This effect is consistent with anomaly (non universal Z^{\prime})
- Global fit to b → sµ⁻µ⁺ and b → se⁻e⁺ seems to favour Z' with non lepton universal couplings.

JHEP (2014) 131

Conclusions

- Rare decays play important role in hutting NP.
- Can access NP scales beyond reach of GPD.
- Tension in $b \rightarrow s\ell\ell$, theory correct?
- List of decays presented in this talk is just a tip of iceberg:
 - $\circ~$ Please look at ours: isospin, $A_{CP}.$
 - $\circ~$ More results are on their way.
- Many results really on SM prediction, QCD improved calculations would be highly appreciated.

WELL, WHAT DID YOU EXPECT FROM A PARTICLE WITH NO SPIN?

³/23

Backup

Marcin Chrząszcz (Universität Zürich)

Electroweak penguin decays to leptons and Radiative decays at LHCb